1 II-VI semiconductor microcavities microcavity physics polariton stimulation prospects.

Slides:



Advertisements
Similar presentations
Quantum Dots in Photonic Structures
Advertisements

PLMCN‘10 Bloch-Polaritons in Multiple Quantum Well Photonic Crystals David Goldberg 1, Lev I. Deych 1, Alexander Lisyansky 1, Zhou Shi 1, Vinod M. Menon.
ULTRAFAST CONTROL OF POLARITON STIMULATED SCATTERING IN SEMICONDUCTOR MICROCAVITIES Cornelius Grossmann1 G. Christmann, C. Coulson and J.J. Baumberg Nanophotonics.
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Strong coupling between Tamm Plasmon and QW exciton
Spatial coherence and vortices of polariton condensates
The Nobel Prize in Physics 2012 Serge Haroche David J. Wineland Prize motivation: "for ground-breaking experimental methods that enable measuring and manipulation.
From weak to strong coupling of quantum emitters in metallic nano-slit Bragg cavities Ronen Rapaport.
Cooling a mechanical oscillator to its quantum ground state enables the exploration of the quantum nature and the quantum–classical boundary of an otherwise.
Yoan Léger Laboratory of Quantum Opto-electronics Ecole Polytechnique Fédérale de Lausanne Switzerland.
9 Phonons 9.1 Infrared active phonons
TRIONS in QWs Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Generation of twin photons in Triple Microcavities Jérôme TIGNON C. Diederichs, D. Taj, T. Lecomte, C. Ciuti, Ph. Roussignol, C. Delalande Laboratoire.
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Hui Deng Stephan Gotzinger David Press Yoshihisa Yamamoto Robin Huang Hui Cao Francesco Tassone Gregor Weihs Stanley Pau (Former members) Quantum Entanglement.
Polariton Physics and Devices Pavlos G. Savvidis Dept of Materials Sci. & Tech Microelectronics Group University of Crete / IESL.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes Richard Younger Journal Club Sept. 15, 2005 Antonio Badolato, kevin Hennessy,
CAVITY QUANTUM ELECTRODYNAMICS IN PHOTONIC CRYSTAL STRUCTURES Photonic Crystal Doctoral Course PO-014 Summer Semester 2009 Konstantinos G. Lagoudakis.
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
COLD DIPOLAR EXCITONS ON A CHIP – FROM FUNDAMENTAL MANY-BODY PHYSICS TO MULTI-FUNCTIONAL CIRCUITRY Ronen Rapaport The Racah Institute of Physics and the.
Prof. Juejun (JJ) Hu MSEG 667 Nanophotonics: Materials and Devices 9: Absorption & Emission Processes Prof. Juejun (JJ) Hu
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Principle of Diode LASER Laser 2
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
High-Q small-V Photonic-Crystal Microcavities
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 16 (3/31/2014) Slide Introduction to Quantum Optics.
Theory of Intersubband Antipolaritons Mauro F
Charge Carrier Related Nonlinearities
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
1 P. Huai, Feb. 18, 2005 Electron PhononPhoton Light-Electron Interaction Semiclassical: Dipole Interaction + Maxwell Equation Quantum: Electron-Photon.
Bose-Einstein Condensation of Exciton-Polaritons in a Two-Dimensional Trap D.W. Snoke R. Balili V. Hartwell University of Pittsburgh L. Pfeiffer K. West.
Photoemission Spectroscopy Dr. Xiaoyu Cui May Surface Canada workshop.
Condensed exciton-polaritons in microcavity traps C. Trallero-Giner Centro Latinoamericano de Fisica, Rio de Janeiro, Brazil Quito/Encuentro de Fisica/2013.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
A. Imamoglu Department of Electrical and Computer Engineering, and Department of Physics, University of California, Santa Barbara, CA Quantum Dot.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Joel Q. Grim 2014 Continuous-wave pumped lasing using colloidal CdSe quantum wells Joel Q. Grim, Sotirios Christodoulou, Francesco.
Itoh Lab. M1 Masataka YASUDA
NONRESONANT TUNNELING IN SHORT-PERIOD SUPERLATTICES WITH OPTICAL CAVITIES M.S. Kagan 1, I.V. Altukhov 1, S.K. Paprotskiy 1, A.N. Baranov 2, R. Teissier.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Luminescence basics Types of luminescence
Hybrid Bose-Fermi systems
Region of possible oscillations
Alberto Amo, C. Adrados, J. Lefrère, E. Giacobino, A. Bramati
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh.
Semiconductor quantum well
High Resolution Energy Loss Spectroscopy of “Sheet” Plasmons Roy F. Willis, Department of Physics, The Pennsylvania State University University Park, PA.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Direct Observation of Polariton Waveguide in ZnO nanowire at Room Temperature motivation abstract We report the direct experimental evidence of polariton.
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Summary of research activities
SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY
Teoria quantistica: Polaritone.
8.2.2 Fiber Optic Communications
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Degenerate Semiconductors
Coupled atom-cavity system
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Condensation of exciton-polaritons at room temperature
Nonlinear response of gated graphene in a strong radiation field
Kenji Kamide* and Tetsuo Ogawa
Exciton Polariton Waveguide in ZnO Nanorod
Jaynes-Cummings Hamiltonian
Presentation transcript:

1 II-VI semiconductor microcavities microcavity physics polariton stimulation prospects

2 z QW ~ 10 nmoptical cavity ~ 1 µm Semiconductor microcavity Confinement along z for both cavity modes and QW excitons 2D light-matter interaction mirror

3 cavity mode exciton k z1, k // k z2, k //  Rabi Selection rule : conservation of in-plane wavevector k // exciton (k // )  cavity mode (same k // ) 2D light-matter interaction  cav XX  cav,,  X <  Rabi strong coupling regime : polaritons > weak coupling regime : Purcell effect UP LP

4 Polariton in-plane dispersion Cavity mode confined along z : k 1z ~ m -1 >> k // photon dispersion>> exciton dispersion photon mass ~ exciton mass Polariton = photon * exciton polariton DOS ~ exciton DOS

5 finite lifetime  1 ps(mirror reflectivity) high radiative recombination rate k //   k // = (  / c) sin  direct injection / probe of polariton population LP = trap in k space with small DOS macroscopic state occupancy can be achieved for densities well below the exciton screening limit bosonic final state stimulation  Bose condensation z  k // Polariton features

6 II-VI VS III-V Lattice mismatch

7 GaAs CdTe ZnSe Oscillator strength (x cm -2 ) Rabi splitting ~ 6 meV 4 QWs one QW Exciton binding energy (meV) screening density (x cm -2 ) 10 II-VI microcavities well suited for polariton condensation II-VI VS III-V

8 Probe of polariton population PL measured at different angles  to the microcavity normal 24 QWs T = 4K   + 5 meV

9 II-VI VS III-V Probe of polariton population N   PL    Bottleneck effect

10 Polariton stimulation Non-resonant quasi-cw excitation

11 Polariton stimulation polariton-polariton scattering  P 2 ! Bosonic final state stimulation

12 Polariton stimulation Suppression of bottleneck effect

13 Polariton stimulation New polariton dispersion above stimulation threshold Evidence of macroscopic coherence ? (Ciuti, PRB 2001)

14 Resonant excitation : parametric gain

15 Parametric gain : II-VI VS III-V M. Saba et al., Nature 2001

16 Parametric gain : II-VI VS III-V M. Saba et al., Nature 2001

17 Prospects Polariton stimulation under non-resonant excitation conditions at RT ? Larger exciton binding energy, e.g. in ZnSe, GaN, organic microcavities Deeper trap / scattering efficiency ?

18 Microcavity activities in Grenoble Polariton stimulationSingle photon solid source (2D microcavity + QW)(0D microcavity + QD)Régis AndréRobert RomestainLe Si Dang Maxime Richard (PhD)Jean-Michel Gérard Kuntheak Kheng Henri Mariette Yvan Robin (PhD) Sebastian Moehl (PhD)