A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.

Slides:



Advertisements
Similar presentations
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Advertisements

Who are the usual suspects? Type I Supernovae No fusion in white dwarf, star is supported only by electron degeneracy pressure. This sets max mass for.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
Neutron Stars and Black Holes
X-ray polarisation: Science
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University TeV Neutrinos and Gamma rays from Pulsars/Magnetars.
Cosmic Rays Basic particle discovery. Cosmic Rays at Earth – Primaries (protons, nuclei) – Secondaries (pions) – Decay products (muons, photons, electrons)
Science Drivers for the Next Generation VHE Telescope(s?) G. Sinnis with much help from C. Dermer, J. Buckley, H. Krawczynski, S. LeBohec, R. Ong, M. Pohl,
What is High-Energy Astrophysics? What is studied by high-energy astrophysicists: Supernovae Supernovae remnants Pulsars/magnetars Gamma-ray bursts Accreting.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
Gamma-Ray Astronomy Dana Boltuch Ph. D
A Visit to Ghost Ranch Jim Linnemann Michigan State University & Los Alamos National Laboratory June 18, 2003.
The Spectrum of Markarian 421 Above 100 GeV with STACEE Jennifer Carson UCLA / Stanford Linear Accelerator Center February MeV 1 GeV 10 GeV 100.
Gamma-ray Astrophysics Pulsar GRB AGN SNR Radio Galaxy The very high energy  -ray sky NEPPSR 25 Aug Guy Blaylock U. of Massachusetts Many thanks.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Zurich PhD seminar, August Arno Gadola A new camera concept for Cherenkov telescopes.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
High-Energy Astrophysics
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration.
The “Crab Nebula”: the most famous supernova remnant. distance  2000 pc diameter  3 pc.
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Space-based Gamma-ray Astronomy Liz Hays (NASA Goddard Space Flight Center)
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
First results of Galactic observations with MAGIC Javier Rico Institut de Física d’Altes Energies Barcelona, Spain XII International Workshop on “Neutrino.
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
The X-ray Universe Sarah Bank Presented July 22, 2004.
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Application of neutrino spectrometry
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
L EPTONIC NEUTRINOS Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University My collaborators: Prabir Banik and Biplab Bijay.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
Introduction to the High Energy Astrophysics Introductory lecture.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
1st page of proposal with 2 pictures and institution list 1.
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April,
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
Gamma-Ray Emission from Pulsars
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Gamma-Ray Bursts Please press “1” to test your transmitter.
1 ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) Netherlands Institute for Radio Astronomy Astronomy at ASTRON George Heald.
Point-like source searches with ANTARES RICAP Conference Rome, June 2007 Juan de Dios Zornoza (IFIC - Valencia)
Tobias Jogler Max-Planck Institut für Physik IMPRS YSW Ringberg 2007 VHE emission from binary systems Outline Binary systems Microquasar Pulsar binaries.
MAGIC M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
Observation of Pulsars and Plerions with MAGIC
Presentation transcript:

A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 2 Outline  Introduction into γ -ray astronomy  Characteristics and detection of γ -ray induced Cherenkov pulses  Reconstruction of detected Cherenkov pulses  Results of reconstruction algorithm  Summary and Outlook

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 3 γ -rays SNR Dark Matter GRBs AGNs Pulsars PWN Micro quasars x-ray binaries  Energy range:10 3 – eV  HE and VHE: 10 7 – eV  Wavelength: – m  Visible light: 3.2 – 1.6 eV 380 – 750 nm  Production mechanisms: inverse Compton, π 0 → γγ, decay of heavy particles, etc.  Low rates: 1 γ /min (Vela pulsar)  Not affected by magnetic fields  Probing non-thermal universe

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 4 Cherenkov light production X 0 = typically 330m in atmosphere Bremsstrahlung v e >c/n=c n E0E0 ½E 0 ¼E 0 θ≈1˚  45‘000m 2 illuminated on sea level, but θ(n)! e

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 5 Cherenkov light production Some values for relativistic electrons: Characteristics of Cherenkov pulses:  Duration: ≈ 5ns  Time spread: 0 – 10ns  Intensity: 4.6 – 74 γ /m 2 for E γ = 0.1 – 1TeV (A. M. Hillas, 2002) i.e. for a 12m telescope = 110m 2 mirror = 500 – 8’140 γ  Wavelength: 300 – 600 nm sea level n θ max 40°1.3° E Tresh 260 keV21’000 keV X0X0 430 m330 m # γ /m # γ /X 0 1’075’00010’000

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 6 Cherenkov telescope MAGIC I, La Palma Mirror ø 17m Noise:□ stars □ airplanes □ cities Signal:□ γ -rays □ protons □ muons H.E.S.S., Namibia MAGIC I camera ø 1.5m, 450kg     

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 7 Camera readout chain

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 8 Cross-Correlation     m mngmfngf][][])[*( *     dtgftgf)()())(*( * For two continuous functions: For two discrete functions: The second derivative:  Better resolution of pile-up

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 9 Simulation ≈ TemplateSimulated measurement f NSB = 3000 MHz (full moon)     m mngmfngf][][])[*( *

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 10 Reconstruction Output at threshold of 2 γ Signal:4.6 t=250ns Input sample Signal: A=5 t=250ns NSB:60MHz (After ADC): Second derivative of the discrete cross-correlation Reconstruction of sample with time and amplitude stamps

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 11  Time resolution:(0.0 ± 0.4)ns for 12bits, 1000MHz ADC (-0.5 ± 1.5)ns for 10bits, 250MHz ADC  Amplitude resolution: (0.7 ± 1.5) γ for 12bits, 1000MHz ADC (1.5 ± 2.0) γ for 10bits, 250MHz ADC  Reconstruction efficiency increases with: higher ADC resolution or higher ADC sampling rate higher Cherenkov signal amplitude higher NSB frequency  Noise rate for 3000 MHz NSB and sampling rate f s = 1 GHz: 8 bits → noise rate = 360 MHz 10 bits → noise rate = 240 MHz 12 bits → noise rate = 125 MHz Results  Simulation parameters: ADC resolutions:8 – 12bit ADC sampling rates:250 – 1000 MHz NSB:40 – 3000MHz Cherenkov signal amplitudes:1 – 100 γ This ratio of 3:2:1 shows up for all sampling rates f s

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 12 Summary & Outlook  Good reconstruction efficiency for an ADC setup with 300 MHz and bit sampling: 5 γ noise rate < 100 kHz for low NSB (100 MHz) 5 γ noise rate < 5 MHz for large NSB (3000 MHz)  Further investigations on reconstruction algorithm behavior (time jitter, real data)  Investigation of a hardware based implementation of the reconstruction algorithm  Designing a toy camera readout chain for testing the signal reconstruction algorithm  Research on “new” light collector design together with ETHZ

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 13 Questions ?

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 14 Backup Slides  Shower development  Propertier of Cherenkov light  Propertier of the atmosphere  Photon interactions  Simulation examples  Time resolution  Amplitude resolution

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 15 γ -ray sources  Supernova remnants (SNRs)  A supernova is the explosion of a massive star (mass of 8 to 150 solar masses) at the end of  its life. Cosmic-rays are accelerated in the supernova explosion shocks which are non thermal processes. The gamma-ray energies reach well beyond 1013 eV.  Pulsars and associated nebulae  Pulsars are rotating neutron stars with an intense magnetic field. The pulsar’s magnetosphere  is known to act as an efficient cosmic accelerator with gamma-ray emission in the range of 10  to 100 GeV.  Pulsar wind nebulae are synchrotron nebulae powered by the relativistic winds of energetic  pulsars. Their VHE gamma-ray emissions originate most probably from electrons accelerated  in the shock formed by the interaction of the pulsar wind with the supernova ejecta. The most  famous pulsar wind nebula is the Crab Nebula which, due to its strong and steady  emission of gamma-rays, is used as calibration candle for almost all VHE gamma-ray detectors.  Binary systems  A binary system contains a compact object like a neutron star or a black hole orbiting a massive  star. Such objects emit mostly VHE gamma-rays.  Active galactic nuclei (AGNs)  An AGN is a galaxy with a super massive black hole at the core. AGNs are known to produce  outflows which are strong sources of high energy gamma-rays. Other possible sources of  gamma-rays are synchrotron emission from populations of ultra-relativistic electrons and inverse  Compton emission from soft photon scattering.  Gamma ray bursts (GRBs)  GRBs are still a not completely resolved phenomenon. Their pulses are extremely intensive and  have a duration of about 0.1 seconds to several minutes. They are known as the most luminous  electromagnetic events occurring in the universe since the Big Bang and they all originate from  outside our galaxy (as known so far). Investigation of gamma-rays coming from GRBs would  help to establish a reliable model for GRBs.  Dark matter  Dark matter particles accumulate in, and cause, wells in gravitational potential, and with high  enough density they are predicted to have annihilation rates resulting in detectable fluxes of  high energy gamma-rays.

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 16 Shower development Astroparticle Physics, Claus Grupen

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 17 Shower development Very High Energy Gamma-ray Astronomy, T.C. Weekes

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 18 Properties of Cherenkov light Astroparticle Physics, Claus Grupen

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 19 Properties of the atmosphere Astroparticle Physics, Claus Grupen

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 20 Photon interactions Astroparticle Physics, Claus Grupen Dominations of photon interactions Observation of UHE gamma-rays only possible for near sources due to attenuation through γ + γ  e + + e - (e.g. cosmic background γ’s)

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 21 Simulation examples ≈ NSB of frequency f NSB superposed by two 5 γ showers f NSB = 40 MHz (newmoon) f NSB = 3000 MHz (full moon)

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 22 Time resolution

, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 23 Amplitude resolution