Pn Syazni Zainul Kamal.  CO2 : Ability to classify and use separation techniques and gravimetric methods for mass determination.

Slides:



Advertisements
Similar presentations
Gravimetric Analysis.
Advertisements

Gravimetric Analysis.
Section 09 Gravimetric Analysis and Precipitation Equilibria.
Ch 6: Good Titrations.
Intro to Titrations. Volumetric Analysis Volumetric analysis is when the volume of a reactant required to complete a chemical reaction is measured. As.
Filtration and Washing
Gravimetric Analysis By: Dr. O. Rajabi (Pharm.D.- Ph.D.) Associate Professor of Chemistry Department of Medicinal Chemistry Mashad University of Medical.
Gravimetric Analysis Introduction 1.) Gravimetric Analysis:
Chapter 18: Chemical Equilibrium
Chapter 15 Solutions Solution- homogeneous mixture w/ components uniformly intermingled Solute- substance in the smallest amount Solvent- substance in.
Chapter 8 Gravimetric Methods of Analysis. -Gravimetric methods of analysis are based on the measurement of mass -Two major types of gravimetric methods.
Aneeqa Haider, Ariel Tsang, Carrie Fan, Fabiha Nuzhat.
Acid-Base Equilibria and Solubility Equilibria Chapter
Titremetric analysis Dr. Mohammad Khanfar. Concept of Titremetric analysis In general, we utilize certain property of a substance to be analyzed in order.
1 Solution Stoichiometry The concentration of a solution is the amount of solute present in a given quantity of solvent or solution. M = molarity = moles.
Gravimetric Analysis l A Gravimetric analysis is based upon the measurement of the weight of a substance that has a KNOWN composition AND IS chemically.
1 Solutions Chapter Solutions Solutions are homogeneous mixtures Solute is the dissolved substance –Seems to “disappear” or “Takes on the state”
Gravimetric Analysis and Precipitation Equilibria
GRAVIMETRIC METHODS OF ANALYSIS Gravimetric methods are quantitative methods based upon measuring the mass of a pure compound to which the analyte is chemically.
Chapter 12: Gravimetric Methods of Analysis
Solutions and their Behavior Chapter Identify factors that determine the rate at which a solute dissolves 2. Identify factors that affect the solubility.
Solutions Solubility -the amount of solute that can be dissolved to form a solution. Solvent – the substance in a solution present in the greatest amount.
Solution Chemistry (Chp. 7)
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Solutions Ch.12 & 13. Liquids Condensed States Liquids and Solids Liquids and Solids Higher densities Higher densities Slightly compressible Slightly.
Gravimetric Methods of Analysis methods based on measurement of weight of an analyte or a compound containing the analyte Precipitation methods based on.
Solution Chemistry (Chp. 7) Chemistry Topics Molar Concentration (mol/L) Dilutions % Concentration (pp. 255 – 263) Solution Process Solution Preparation.
STEPS OF A GRAVIMETRY ANALYSIS Filtration and Washing
Gravimetric Analysis Introduction 1.)Gravimetric Analysis: (i) A technique in which the amount of an analyte in a sample is determined by converting the.
ERT207 Analytical Chemistry Gravimetric Analysis and Precipitation Equilibria Pn Syazni Zainul Kamal.
CHEMISTRY ANALYTICAL CHEMISTRY Fall Lecture 10 Chapter 27: Gravimetric and combustion analysis.
Introduction to Analytical Chemistry
Prepared by PhD Halina Falfushynska 1 Lecture 7. Electrolytes. Reactions in Aqueous Solutions.
1 Chapter 7: Solutions and Colloids. 2 SOLUTIONS Solutions are homogeneous mixtures of two or more substances in which the components are present as atoms,
ANALYTICAL CHEMISTRY CHEM 3811 CHAPTERS 6 & 7
LECTURE 2 CHAPTER 4: CLASSICAL METHODS OF ANALYTICAL CHEMISTRY: GRAVIMETRIC METHODS OF ANALYSIS CO3: ABILITY TO CLASSIFY SEPARATION TECHNIQUES AND TO USE.
Chapter 15: Solutions 15.1 Solubility 15.2 Solution Composition 15.3 Mass Percent 15.4 Molarity 15.7 Neutralization Reactions.
Solutions Homogeneous mixtures that may be solid, liquid or gaseous Solute: The part of the solution that is dissolved Solvent: The part of the solution.
1 Steps in a Gravimetric Analysis After appropriate dissolution of the sample, the following steps should be followed for a successful gravimetric procedure:
By Steven S. Zumdahl & Donald J. DeCoste University of Illinois Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry,
Chapter 13 Water and Its Solutions Section 13.2 Solutions and Their Properties.
1 Gravimetric Analysis. 2 Gravimetric analysis is the quantitative determination of analyte concentration through a process of precipitation of the analyte,
Chapter 15 Solutions. 1.To understand the process of dissolving 2.To learn why certain substances dissolve in water 3.To learn qualitative terms describing.
PRINCIPLE OF GRAVIMETRIC ANALYSIS GROUP 1 :MIC 3A1
Unit 8 Solution Chemistry
Associate prof . L.V. Vronska Associate prof . M.M. Mykhalkiv
Inorganic and Analytical Chemistry
Representation of silver chloride colloidal particle
1 Chapter 2 Steps in a chemical analysis Plan of analysis Before doing any quantitative analysis, the following questions should be answered: 1-
1 What weight of sulfur (FW = ) ore which should be taken so that the weight of BaSO 4 (FW = ) precipitate will be equal to half of the percentage.
GRAVIMETRIC ANALYSIS BY Dr.JAGADEESH. INTRODUCTION Gravimetric Analysis: It is a method of chemical analysis done by weighing a precipitate ( element.
GRAVIMETRIC METHODS. Gravimetric methods of which are based upon the measurment of mass, are of two major types: Precipitation Methods Volatilization.
Solutions. Solutions are: A homogeneous mixture of two or more substances in a single phase Composed of: 1.Solvent- the substance that does the dissolving.
Section 15.1 Forming Solutions Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste Gretchen M. Adams University of Illinois at Urbana-Champaign Chapter.
Chapter 12 Gravimetric Methods of Analysis. Gravimetric methods are quantitative methods that are based on determining the mass of a pure compound to.
Section 15.1 Forming Solutions 1.To understand the process of dissolving 2.To learn why certain substances dissolve in water 3.To learn qualitative terms.
Precautions in Gravimetric & Volumetric Analysis Presented by: Dar Jaffer Yousuf AEM-MA
Solutions Chapter 14 Dr. Schuerch. Properties of Solutions Solution Formation –Solutions are homogeneous mixtures that may be solid, liquid, or gas The.
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Section 09 Gravimetric Analysis and Precipitation Equilibria.
Coagulating and Peptization of Colloidal Precipitate
Gravimetric Methods of Analysis
Gravimetric Analysis Introduction 1.) Gravimetric Analysis:
Experiment 7.
Gravimetric Analysis Introduction 1.) Gravimetric Analysis:
Gravimetric Analysis.
Solutions.
Gravimetric Analysis Assignment #5.
GRAVIMETRIC METHODS OF ANALYSIS
Gravimetric Analysis.
Presentation transcript:

Pn Syazni Zainul Kamal

 CO2 : Ability to classify and use separation techniques and gravimetric methods for mass determination

Introduction The term gravimetric pertains to a Weight Measurement. Gravimetric method is one in which the analysis is completed by a weighing operation. Gravimetric Analysis is a group of analytical methods in which the amount of analyte is determined by the measurement of the mass of a pure substance containing the analyte. Gravimetric Methods can also be defined as quantitative methods based on the determining the mass of a pure compound to which the analyte is chemically related.

There are two main types of gravimetric analyses: A) Precipitation B) Volatilization analyte must first be converted to a solid (precipitate) by precipitation with an appropriate reagent. The precipitates from solution is filtered, washed, purified (if necessary) and weighed. In this method the analyte or its decomposition products are volatilised (dried) and then collected and weighed, or alternatively, the mass of the volatilised product is determined indirectly by the loss of mass of the sample.

Example for Precipitation:- Calcium can be determined gravimetrically by precipitation of calcium oxalate and ignition of the oxalate ion to calcium oxide. Ca 2+ + C 2 O 4 2- → CaC 2 O 4 CaC 2 O 4 → CaO + CO 2 + CO The precipitate thus obtained are weighed and the mass of calcium oxide is determined.

Example for Volatilisation:- The analyte or its decomposition products are volatilised at a suitable temperature. The volatile product is then collected and weighed, i.e. the mass of the product is indirectly determined from the loss in mass of the sample. Example Water can be separated from most inorganic compounds by ignition, the evolved water can then be absorbed on any one of several solid desiccants. The weight of water evolved may be calculated from the gain in weight of the absorbent.

Not all insoluble precipitates are well suited for gravimetric analysis. It is important to consider what properties are required in order that a precipitate be applicable for a quantitative precipitation method:- Solubility Filterability Chemical Composition Other Desirable Properties

Solubility Filterability Chemical Composition Other Desirable Properties The product must be sufficiently insoluble to prevent the loss of weight. Precipitate formed should be adoptable to simple and rapid filtration methods. The product must be of known chemical composition. Other factors effecting the stability and purity of the precipitate.

For a successful determination in gravimetric analysis the following criteria should be met :- (1)The desired substance must be completely precipitated. In most determination the precipitate is of such low solubility that losses from dissolution are negligible. An additional factor is the common ion effect, this further decrease the solubility of the precipitate. E.g. When Ag + is precipitated out by addition of Cl - Ag + + Cl - = AgCl The low solubility of AgCl is reduced further by the excess of Cl - which is added force to the reaction to proceed towards right side.

(2)The weighed form of the product should be of known composition. (3)The product should be pure and easily filtered. It is usually difficult to obtain a product which is pure or which is free from impurities. This could be reduced by careful precipitation and sufficient washing. For a successful determination in gravimetric analysis the following criteria should be met :-

Gravimetric analysis is potentially more accurate and more precise than volumetric analysis Gravimetric analysis avoids problems with temperature fluctuations, calibration errors, and other problems associated with volumetric analysis But there are potential problems with gravimetric analysis that must be avoided to get good results. Proper lab technique is critical Gravimetric Analysis

Steps in a Gravimetric Analysis 1. Preparation of the solution 2. Precipitation 3. Digestion 4. Filtration 5. Washing 6. Drying or ignition 7. Weighing 8. Calculation

1.Preparation of analyte solution Gravimetric analysis usually involves precipitation of analyte from solution. 1 st step – prepare the analyte solution May need : - preliminary separation to separate potential interferences before precipitating analyte - adjustment of solution condition (pH/temp/vol/conc of test substance) to maintain low solubility of precipitate & max precipitate formation. Eg Calcium oxalate insoluble in basic medium

2. Precipitation  The precipitating reagent is added at a concentration that favors the formation of a "good" precipitate.  This may require low concentration, extensive heating (often described as "digestion"), or careful control of the pH.  The precipitate should  Be sufficiently insoluble  Have large crystals (Easier to filter large crystals)  Be free of contaminants

Precipitation process : When solution of precipitating agent (AgNO 3 ) added into testing solution (KCl) to form AgCl precipitate, 1) Supersaturation : the solution phase contains more dissolved salt than at equilibrium. The driving force will be for the system to approach equilibrium (saturation). 2) Nucleation : initial phase of precipitation. A min number of particle will gather together to form a nucleus of particle or precipitate (solid phase). Higher degree of supersaturation, the greater rate of nucleation Ag + Cl - Ag + Cl-Ag+Cl-

nucleation involves the formation of ion pairs and finally a group of ions formed. 3) Particle growth : particle enlargement process. Nucleus will grow by deposition of particles precipitate onto the nucleus and forming a crystal of a specific geometric shape. Von weimarn discover – the particle size of precipitates is inversely proportional to the relative supersaturation of the sol. during the precipitation process.

The von Weimarn Ratio von Weimarn ratio = (Q – S) S A measure of relative supersaturation or supersaturation ratio The lower the better If high, get excessive nucleation, lots of small crystals, large surface area If low, get larger, fewer crystals, small surface area

S = solubility of precipitate at equilibrium Keep it high with high temperatures, adjusting pH Q = concentration of reagents before precipitation Keep it low by using dilute solutions, stir mixture well, add reactants slowly Can lower S later by cooling mixture after crystals have formed

3. Digestion of the Precipitate Let precipitate stand in contact with mother liquor (the solution from which it was precipitated), usually at high temp This process is called digestion, or Ostwald ripening. The small particles tend to dissolve and precipitate on the surfaces of the larger crystals Digestion make larger crystals, reduce surface contamination, reduce crystals imperfection

4. Filtration Sintered glass crucibles are used to filter the precipitates. The crucibles first cleaned thoroughly and then subjected to the same regimen of heating and cooling as that required for the precipitate. This process is repeated until constant mass has been achieved, that is, until consecutive weighing differ by 0.3 mg or less. chapter 2

5. Washing Co precipitated impurities esp those on surface, removed by washing the precipitate Wet precipitate with mother liquor and which will also be remove by washing Need to add electrolyte to the wash liquid bcoz some precipitate cannot be wash with pure water, peptization occur. Eg HNO 3 for AgCl precipitate

6) Drying or ignition To remove solvent and wash electrolytes Done by heating at 110 to 120°C for 1 to 2 hrs. Converts hygroscopic compound to non- hygroscopic compound May used high temp if precipitate must be converted to a more suitable form before weighing Eg MgNH 4 PO 4 convert to pyrophosphate Mg 2 P 2 O 7 by heating at 900°C.

7) Weighing After the precipitate is allowed to cool (preferably in a desiccator to keep it from absorbing moisture), it is weighed (in the crucible). Properly calibrated analytical balance Good weighing technique

Organic Precipitates Organic precipitating agents have the advantages of giving precipitates with very solubility in water and a favorable gravimetric factor. Most of them are chelating agents that forms slightly insoluble, uncharged chelates with the metal ions.

Organic Precipitates

 in gravimetric method – the analyte (solute) is converted to precipitate which is then weight  From the weight of the precipitate formed in a gravimetric analysis, we can calculate the weight of the analyte Gravimetric Analysis: Weight Relationship

Gravimetric factor (GF) = weight of analyte per unit weight of precipitate. Obtain from ratio of F Wt of the analyte per F Wt precipitate, multiplied by moles of analyte per mole of precipitate obtained from each mole of analyte GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate

Example 1 If Cl 2 in a sample is converted to chloride and precipitated as AgCl, the weight of Cl 2 that gives 1g of AgCl is? F wt Cl = F wt Ag = GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate

GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate g Cl 2 = g AgCl x f wt analyte (g/mol) x a f wt precipitate (g/mol) b = 1 AgCl x g/mol x 1 mol g/mol 2 mol = g

percent composition by weight of the analyte in the sample : % A = g A x 100% g sample g A – grams of analyte (the desired test substance) g sample – grams of sample taken for analysis

EXAMPLE 2 A g sample of commercial phosphate detergent was ignited at a red heat to destroy the organic matter. The residue was then taken up in hot HCl which converted P to H 3 PO 4. The phosphate was precipitated with Mg 2+ followed by aqueous NH 3 to form MgNH 4 PO 4.6H 2 O. After being filtered and washed, the precipitate was converted to Mg 2 P 2 O 7 (FW=222.57) by ignition at 100ºC. This residue weighed g. Calculate the percent P (FW = ) in the sample.

g P = g x x = g % A = g A x 100% g sample = g x 100% g = % GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate

EXAMPLE 3 Orthophosphate (PO 4 3- ) is determined by weighing as ammonium phosphomolybdate (NH 4 )PO 4.12MoO 3. Calculate the percent P and the percent P 2 O 5 if g precipitate (ppt) were obtained from a g sample. [F wt P = 30.97], [F wt P.molybdate = ], [F wt P 2 O 5 = ]

g P = g x g/mol x 1 mol g/mol 1 mol = g % P = g x 100% g = %

g P 2 O 5 = g x g/mol x 1 mol g/mol 2 mol = g % P 2 O 5 = g x 100% g = 22.94%