A counterexample for the graph area law conjecture Dorit Aharonov Aram Harrow Zeph Landau Daniel Nagaj Mario Szegedy Umesh Vazirani arXiv:1410.0951.

Slides:



Advertisements
Similar presentations
Department of Computer Science & Engineering University of Washington
Advertisements

Quantum Computation and Quantum Information – Lecture 3
Local Hamiltonians in Quantum Computation Funding: Slovak Research and Development Agency, contract No. APVV , European Project QAP 2004-IST- FETPI-15848,
Circuit and Communication Complexity. Karchmer – Wigderson Games Given The communication game G f : Alice getss.t. f(x)=1 Bob getss.t. f(y)=0 Goal: Find.
Random non-local games Andris Ambainis, Artūrs Bačkurs, Kaspars Balodis, Dmitry Kravchenko, Juris Smotrovs, Madars Virza University of Latvia.
Quantum Computing MAS 725 Hartmut Klauck NTU
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
Robust Randomness Expansion Upper and Lower Bounds Matthew Coudron, Thomas Vidick, Henry Yuen arXiv:
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum information as high-dimensional geometry Patrick Hayden McGill University Perspectives in High Dimensions, Cleveland, August 2010.
On Quantum Walks and Iterated Quantum Games G. Abal, R. Donangelo, H. Fort Universidad de la República, Montevideo, Uruguay UFRJ, RJ, Brazil.
Quantum Computing MAS 725 Hartmut Klauck NTU
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
Classical capacities of bidirectional channels Charles Bennett, IBM Aram Harrow, MIT/IBM, Debbie Leung, MSRI/IBM John Smolin,
Shengyu Zhang The Chinese University of Hong Kong (Joint work with Rahul Jain, Iordanis Kerenidis, Greg Kuperberg, Miklos Santha, Or Sattash)
Department of Computer Science & Engineering University of Washington
Julia Kempe CNRS & LRI, Univ. of Paris-Sud Alexei Kitaev Caltech Oded Regev Tel-Aviv University FSTTCS, Chennai, December 18 th, 2004 The Complexity of.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Quantum Circuits for Clebsch- GordAn and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow (MIT) quant-ph/ more.
Quantum Circuits for Clebsch- Gordon and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow (MIT) quant-ph/
1 Dorit Aharonov School of Computer Science and Engineering The Hebrew University, Jerusalem, Israel Israel Quantum Hamiltonian Complexity Complexity What.
Derandomizing LOGSPACE Based on a paper by Russell Impagliazo, Noam Nissan and Avi Wigderson Presented by Amir Rosenfeld.
Oded Regev (Tel Aviv University) Ben Toner (CWI, Amsterdam) Simulating Quantum Correlations with Finite Communication.
Quantum Algorithms I Andrew Chi-Chih Yao Tsinghua University & Chinese U. of Hong Kong.
CSEP 590tv: Quantum Computing
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
1 Quantum NP Dorit Aharonov & Tomer Naveh Presented by Alex Rapaport.
Coherent Classical Communication Aram Harrow (MIT) quant-ph/
A Fault-tolerant Architecture for Quantum Hamiltonian Simulation Guoming Wang Oleg Khainovski.
NO INPUT IS DETECTED ON RGB1. Quantum Circuits for Clebsch- Gordon and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow.
Erasing correlations, destroying entanglement and other new challenges for quantum information theory Aram Harrow, Bristol Peter Shor, MIT quant-ph/
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Generalized Deutsch Algorithms IPQI 5 Jan Background Basic aim : Efficient determination of properties of functions. Efficiency: No complete evaluation.
Inverting Well Conditioned Matrices in Quantum LogSpace Amnon Ta-Shma Tel-Aviv University.
Thermalization and Quantum Information Fernando G.S.L. Brandão University College London New Perspectives on Thermalization, Aspen 2014 partially based.
Merlin-Arthur Games and Stoquastic Hamiltonians B.M. Terhal, IBM Research based on work with Bravyi, Bessen, DiVincenzo & Oliveira. quant-ph/ &
Quantum Information Theory: Present Status and Future Directions Julia Kempe CNRS & LRI, Univ. de Paris-Sud, Orsay, France Newton Institute, Cambridge,
Barriers in Hamiltonian Complexity Umesh V. Vazirani U.C. Berkeley.
1 Dorit Aharonov Hebrew Univ. & UC Berkeley Adiabatic Quantum Computation.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
Quantum random walks and quantum algorithms Andris Ambainis University of Latvia.
September 12, 2014 Martin Suchara Andrew Cross Jay Gambetta Supported by ARO W911NF S IMULATING AND C ORRECTING Q UBIT L EAKAGE.
Introduction to MERA Sukhwinder Singh Macquarie University.
Nawaf M Albadia
Efficiency of Multi-Qubit W states in Information Processing Atul Kumar IPQI-2014 IIT Jodhpur
A Monomial matrix formalism to describe quantum many-body states Maarten Van den Nest Max Planck Institute for Quantum Optics Montreal, October 19 th 2011.
Quantum algorithms vs. polynomials and the maximum quantum-classical gap in the query model.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Quantum Computing MAS 725 Hartmut Klauck NTU
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
Forrelation: A Problem that Optimally Separates Quantum from Classical Computing.
Page 1 COMPSCI 290.2: Computer Security “Quantum Cryptography” including Quantum Communication Quantum Computing.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
Ground State Entanglement in 1-Dimensional Translationally-Invariant Quantum Systems Sandy Irani Computer Science Department University of California,
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
Simulation and Design of Stabilizer Quantum Circuits Scott Aaronson and Boriska Toth CS252 Project December 10, X X +Z Z +ZI +IX
Attendance Syllabus Textbook (hardcopy or electronics) Groups s First-time meeting.
Quantum Approximate Markov Chains and the Locality of Entanglement Spectrum Fernando G.S.L. Brandão Caltech Seefeld 2016 based on joint work with Kohtaro.
The complexity of the Separable Hamiltonian Problem
Hamiltonian quantum computer in one dimension
sparse codes from quantum circuits
For computer scientists
Computational Complexity of Quantum Systems
3rd Lecture: QMA & The local Hamiltonian problem (CNT’D)
Decoupling with random diagonal-unitaries
Qubit Recycling in Quantum Computation
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 17 (2005) Richard Cleve DC 3524
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Presentation transcript:

A counterexample for the graph area law conjecture Dorit Aharonov Aram Harrow Zeph Landau Daniel Nagaj Mario Szegedy Umesh Vazirani arXiv:

Background: local Hamiltonians || H i,j || ≤ 1 Assume: degree ≤ const, gap := λ 1 – λ 0 ≥ const. Define: eigenvalues λ 0 ≤ λ 1 ≤ … eigenstates |ψ 0, |ψ 1, … Known: |AB - AB| ||A|| ||B|| exp(-dist(A,B) / ξ) “correlation decay” [Hastings ’04, Hastings-Kumo ‘05,...] Intuition: ((1+λ 0 )I – H) O(1) ≈ ψ 0 [Arad-Kitaev-Landau-Vazirani, ] X := tr[Xψ 0 ]

Area “law”? Conjecture: For any set of systems A ⊆ V Or even, with variable dimensions d 1, …, d n. gap Known: in 1-D correlation decay area law Hastings ‘04 Brandão-Horodecki ‘12 Hastings ’07, Arad-Kitaev-Landau-Vazirani ‘13 further implications: efficient description (MPS), algorithms

This talk dimensionNN33 Entanglement ∝ log(N) Qubit version: n qubits entanglement ∝ n c

Apparent detour: EPR testing |Ãi=|©i?|Ãi=|©i? |Ãi|Ãi Idea: |©i is unique state invariant under U­U*. Result: Error ¸ with O(log 1/¸) qubits sent. Previous work used O(loglog(N) + log(1/λ)) qubits [BDSW ‘96, BCGST ’02] log(t) qubits UiUi Ui*Ui*

EPR testing protocol 1.Initial state: 2.Alice adds ancilla in state 3.Alice applies controlled U i i.e. ∑ i |ii| ⊗ U i 4.Alice sends A’ to Bob and Bob applies controlled U i * 5.Bob projects B’ onto t -1/2 ∑ i |i. |ψ AB steps state

Analyzing protocol Subnormalized output state (given acceptance) is Pr[accept] = ψ|M†M|ψ Key claim: || M - |ΦΦ| || ≤ λ Interpretation as super-operators: X = ∑ a,b X a,b |ab|  |X = ∑ a,b X a,b |a ⊗ |b T(X) = AXB  T|X = (A ⊗ B T )|X T(X) = UXU y  T|X = (U ⊗ U * )|X identity matrix  |Φ ||M(X)|| 2 ≤ λ||X|| 2 if tr[X]=0  || M - |ΦΦ| || ≤ λ

Quantum expanders A collection of unitaries U 1, …, U t is a quantum (N,t,λ) expander if whenever tr[X]=0 (cf. classical t-regular expander graphs can be viewed as permutations π 1,…,π t such that t -1 ||∑ i π i x|| 2 ≤ λ||x|| 2 whenever ∑ i x i = 0.) Random unitaries satisfy λ≈ 1 / t 1/2 [Hastings ’07] Efficient constructions (i.e. polylog(N) gates) achieve λ≤ 1 / t c for c>0. [various] Recall communication is log(t) = O(log 1/λ)

Hamiltonian construction Start with quantum expander: {I, U, V} dimensionNN33 HLHL HMHM HRHR H L = -proj span { |ψ ⊗ |1 + U|ψ ⊗ |2 + V|ψ ⊗ |3} H R = -proj span { |1 ⊗ |ψ + |2 ⊗ U T |ψ + |3 ⊗ V T |ψ} H M = (|12-|21)(12| - 21|) + (|13-|31)(13| - 31|)

ground state H L = -proj span { |ψ ⊗ |1 + U|ψ ⊗ |2 + V|ψ ⊗ |3} H R = -proj span { |1 ⊗ |ψ + |2 ⊗ U T |ψ + |3 ⊗ V T |ψ} H M = (|12-|21)(12| - 21|) + (|13-|31)(13| - 31|) ≅ X 1,1 X 1,2 X 1,3 X 2,1 X 2,2 X 2,3 X 3,1 X 3,2 X 3,3

constraints X 1,1 X 1,2 X 1,3 X 2,1 X 2,2 X 2,3 X 3,1 X 3,2 X 3,3 H L = -proj span { |ψ ⊗ |1 + U|ψ ⊗ |2 + V|ψ ⊗ |3} X1X1 X2X2 X3X3 UX 1 UX 2 UX 3 VX 1 VX 2 VX 3

constraints X1X1 X2X2 X3X3 UX 1 UX 2 UX 3 VX 1 VX 2 VX 3 H R = -proj span { |1 ⊗ |ψ + |2 ⊗ U T |ψ + |3 ⊗ V T |ψ} XXUXV UXUXUUXV VXVXUVXV

constraints H M = (|12-|21)(12| - 21|) + (|13-|31)(13| - 31|) XXUXV UXUXUUXV VXVXUVXV XU = UX XV = VX X ∝ I N ≅ |Φ N forces X 1,2 = X 2,1 and X 1,3 = X 3,1 expander has constant λ  H has constant gap

qubit version n qubits entanglement ∝ n c still qutrits strategy: 1. use efficient expanders 2. use Feynman-Kitaev history state Hamiltonian 3. amplify by adding more qubits

in more detail 1.Let N = 2 n. Efficient expanders require poly(n) two-qubit gates to implement U i, given i as input. Ground state of the Feynman-Kitaev(-Kempe-...) Hamiltonian 2. History state: Given a circuit with gates V 1,..., V T A history state is of the form

amplification Circuit size is poly(n)  gap ∝ 1/poly(n) (Highly entangled ground states are known to exist in this case, even in 1-D [Gottesman-Hastings, Irani].) idea: amplify H L and H R by repeating gadgets [Cao-Nagaj] gadgets: [Kempe-Kitaev-Regev ‘03] b a c -Z a Z c -Z b Z c -Z a Z b εZ 1 X a εZ 3 X c εZ 2 X b abc qubits ≈ in {|000,|111} subspace ε 3 Z 1 Z 2 Z

summary 1. EPR-testing with error λ using O(log 1/λ) qubits (Note: testing whether a state equals |ψ requires communication ≈Δ(ψ) := “entanglement spread” of ψ.) 2. Hamiltonian with O(1) gap and n Ω(1) entanglement. caveat: requires either large local dimension or large degree. Questions: O(1) degree, O(1) local dimension? Qutrits in the middle  qubits? Longer chain in the middle? Lattices vs. general graphs

possible graph area law conjecture: entanglement ≤ ∑ v log(dim(v)) exp(-dist(v, cut) / ξ)