The low-temperature nuclear spin equilibrium of H 3 + in collisions with H 2 Kyle N. Crabtree, * Benjamin J. McCall University of Illinois, Urbana, IL.

Slides:



Advertisements
Similar presentations
R. S. RAM and P. F. BERNATH Department of Chemistry, University of York, Heslington, York YO10 5DD, UK. and Department of Chemistry, University of Arizona,
Advertisements

Mats Larsson Stockholm University. Oka 1999 The 2001 year crisis The clouds are dispersing Outstanding questions Outlook.
Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J.
Laboratory Measurements of Primordial Chemistry. Daniel Wolf Savin Columbia Astrophysics Laboratory Xavier Urbain Université catholique de Louvain.
Implications of the H H 2  H 2 + H 3 + reaction for the ortho- to para-H 3 + ratio in interstellar clouds Kyle N. Crabtree, Lt. Col. Brian A. Tom,
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
OXYGEN-18 STUDIES OF HOCO AND HONO FORMATION Oscar Martinez Jr. and Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics School of Engineering.
The ortho-H 2 abundance and the age of molecular clouds Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris.
Benjamin McCall and Takeshi Oka University of Chicago Kenneth H. Hinkle National Optical Astronomy Observatories Thomas R. Geballe Joint Astronomy Centre.
The Non-Thermal Rotational Distribution of Interstellar H 3 + (ApJ, in press ) Takeshi Oka and Erik Epp, Department of Astronomy and Astrophysics, and.
The (3, 3) metastable rotational level of H 3 + Takeshi Oka Department of Chemistry and Department of Astronomy and Astrophysics The Enrico Fermi Institute,
Galactic Center Region Concentrated stars and interstellar matter High Energy Density (gravity, MHD, kinetic) Strong magnetic field :B ~ mG High external.
Hot and Diffuse Gas near the Galactic Center Probed by Metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max Planck Institute for Astronomy.
Hot and Diffuse Gas near the Galactic Center Probed by Metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max-Planck-Institut für Astronomie.
Cosmic 21-cm Fluctuations from Dark-Age Gas Kris Sigurdson Institute for Advanced Study Cosmo 2006 September 25, 2006 Kris Sigurdson Institute for Advanced.
Physics, Chemistry and Astronomy of H 3 + Royal Society Discussion Meeting And the Satellite Meeting January 16-18, 2006.
The Galactic center region Concentrated stars and interstellar matter High energy density (gravity, MHD, kinetic) Strong magnetic field :B ~ mG High external.
H 3 +, the new probe for ionization rate  Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry The Enrico Fermi Institute,
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
Storage ring measurements of the dissociative recombination of H 3 + : a closer look Holger Kreckel University of Illinois at Urbana-Champaign Kyle N.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Progress in measurements of dissociative recombination CRP on Atomic and Molecular Data for Plasma Modelling Mats Larsson Department of Physics Stockholm.
Storage ring measurements of the Dissociative Recombination of H 3 + : a closer look Holger Kreckel University of Illinois at Urbana-Champaign A fundamental.
Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Kyle Crabtree, Carrie Kauffman, Benjamin J. McCall University of Illinois at Urbana-Champaign.
Nuclear dynamics in the dissociative recombination of H 3 + and its isotopologues Daniel Zajfman Max-Planck-Institut für Kernphysik and Weizmann Institute.
Chemistry 2100 Chapters 7 and 8. Chemical kinetics Chemical kinetics: The study of the rates of chemical reactions. –Consider the reaction that takes.
Integrated Coordinated Science End of Year Review.
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Spectroscopic Studies of the H H 2 Reaction at Astrophysically Relevant Temperatures Brian A. Tom, Brett A. McGuire, Lauren E. Moore, Thomas J. Wood,
Forschergruppe Laboratory Astrophysics Interstellar Molecules.
KVS 2002 Activated Nitrogen Effect in Vertically Aligned CNT Tae-Young Kim, Kwang-Ryeol Lee, Kwang-Yong Eun * Future Technology Research Division, Korea.
Topic 6 Kinetics Rates of reaction Collision theory.
H 3 + : A Case Study for the Importance of Molecular Laboratory Astrophysics Ben McCall Dept. of ChemistryDept. of Astronomy.
New Laboratory and Theoretical Studies of Astrophysically Important Reactions of H 3 + Ben McCall Dept. of ChemistryDept. of Astronomy.
T. Oka, PRL 45,531 (1980) What is H 3 + ?  2y 2x  Equilateral triangle structure  Simplest stable polyatomic molecule  No stable excited electronic.
Dynamics in Solid Hydrogen below 4 K David T. Anderson Department of Chemistry, University of Wyoming Laramie, WY th International.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Multi-wavelength Astronomy and the Virtual Observatory, ESAC, Spain, Dec. 1 − 3, 2008 Holger S. P. Müller, J. Stutzki, S. Schlemmer I. Physikalisches.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Interstellar Chemistry: Triumphs & Shortcomings.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Observations of OH + and H 2 O + Across the Galaxy with Herschel Nick Indriolo 1, David Neufeld 1, Maryvonne Gerin 2, & PRISMAS consortium 1 – Johns Hopkins.
Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa.
ISM & Astrochemistry Lecture 3. Models - History – Grain surface chemistry – H 2, CH, CH – Ion-neutral chemistry – HD, DCO
Response of the Earth’s environment to solar radiative forcing
November 6, 2010 MWAM 2010 University of Illinois1 The ortho:para ratio of H 3 + in diffuse molecular clouds Kyle N. Crabtree, Nick Indriolo, Holger Kreckel,
Towards Isolation of Organometallic Iridium Catalytic Intermediates Arron Wolk Johnson Laboratory Thursday, June 20 th, 2013.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular.
Tokyo Institute of Technology Hiroyuki Kawasaki, Asao Mizoguchi, Hideto Kanamori High Resolution Infrared Spectroscopy of CH 3 F-(ortho-H 2 ) n cluster.
Astrochemistry Les Houches Lectures September 2005 Lecture 2 T J Millar School of Physics and Astronomy University of Manchester PO Box88, Manchester M60.
Chemical Probing Spectroscopy of H 3 + above the barrier to linearity Holger Kreckel* Max-Planck-Institut für Kernphysik, Heidelberg, Germany * Present.
ISM & Astrochemistry Lecture 4. Nitrogen Chemistry (dark clouds) H N  NH + + H 2 Endothermic by ~ 100K N + + H 2  NH + + HEndothermic So, at low.
Observation Of Nuclear Spin Selection Rules In Supersonically Expanding Plasmas Containing H 3 + Brian Tom, Michael Wiczer, Andrew Mills, Kyle Crabtree,
69th ISMS 2014/06/17 Urbana-Champaign Lars Kluge I. Physikalisches Institut Universität zu Köln - Germany LIICG - A NEW METHOD FOR ROTATIONAL AND RO-VIBRATIONAL.
Chem101-9P. Chapter 9 Reaction kinetics Equilibrium laws Ion-product constant of water The pH concept Acid ionization constants Base ionization constants.
Modeling the influence of nuclear spin in the reaction of H 3 + with H 2 Kyle N. Crabtree, Brian A. Tom, and Benjamin J. McCall University of Illinois.
Complex Organic Molecules formation on Interstellar Grains Qiang Chang Xinjiang Astronomical Observatory Chinese Academy of Sciences April 22, 2014.
Introductory remarks Takeshi Oka
第四節 氢穩定同位素 氢同位素的基本特征 测量方法 国际标准 分馏系数 常见应用.
He  He+  O+  OH+  OH2+  OH3+  OH2 +e + He + H + H + H + H
Nuclear Spin Dependence of the Reaction of H3+ with H2
N2 Vibrational Temperature, Gas Temperature,
The H3+ + H2 Reaction; A Possible Mechanism for para- H3+ Enrichment in the Diffuse Interstellar Medium Lieutenant Colonel Brian A. Tom, USAF University.
Nick Indriolo1, Thomas R. Geballe2, Takeshi Oka3, and Benjamin J
Spectroscopic measurements of the reaction H3+ + H2  H2 + H3+
University of Illinois at Urbana-Champaign
International Symposium on Molecular Spectroscopy
Nuclear spin of H3+ in diffuse molecular clouds
CHAPTER 9 Chemistry 101.
Presentation transcript:

The low-temperature nuclear spin equilibrium of H 3 + in collisions with H 2 Kyle N. Crabtree, * Benjamin J. McCall University of Illinois, Urbana, IL Florian Grussie, Max H. Berg, Andreas Wolf, Holger Kreckel Max-Planck Institut für Kernphysik, Heidelberg, Germany Sabrina Gärtner, Stephan Schlemmer I. Physikalisches Institut, Universität zu Köln, Köln, Germany * Present address: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA

The setting: diffuse molecular clouds T: 50—70 K; n: 10 2 cm -3 ; Ionization: n(C + ) >> n(C) & n(CO); f(H 2 )  0.9 Chemistry dominated by cosmic ray ionization, ion-molecule reactions, and electron dissociative recombination  Per California Nebula

The players: H 3 + and H 2 para-H 2 ; I = 0 ortho-H 2 ; I = 1 ortho-H 3 + ; I = 3/2 para-H 3 + ; I = 1/2  E = 170 K  E = 32 K UV Absorption (Spitzer; FUSE) IR Absorption (Keck;UKIRT;VLT) Only chemical reactions can interconvert o/p spin modifications e.g. o-H 2 + H +  p-H 2 + H + ; o-H p-H 2  p-H o-H 2

The problem: “spin” temperature T(H 2 ) ≈ K T(H 3 + ) ≈ K H 3 + colder than H 2 ! Crabtree et al. (2011) ApJ 729, 15 ζ-Per X-Per λ-Cep HD HD HD

Possible explanations Kinetic limit: H 2  H Cosmic ray ionization H H 2  H H Fast H 3 + formation H H 2  H 2 + H Incomplete thermalization H e -  H 2 + H (or 3H) Fast recombination Thermodynamic limit “identity” “hop” “exchange” H5+H5+  = k hop /k exch Nonthermal outcome at low T?

Previous H H 2 studies Cordonnier et al. (2000) JCP 113, 3181Crabtree et al. (2011) JCP 134, &  (450 K) = 2.4  (350 K) = 1.6  (135 K) = 0.5

Experimental strategy 5 cm He H2H2 1.Prepare H 2 with known o/p ratio (T 01 ) 2.Set trap temperature to T 01 3.Introduce and cool H Add prepared H 2, allow to react to steady state 5.Measure H 3 + o/p ratio

Sample preparation/verification Fe(III) oxide catalyst Cryogenic container (10K) Raman spectroscopyPara hydrogen converter

LIR spectrometer Laser H2H2 H3+H3+ H3+H3+ He (buffer gas) Ar (probe gas) p-H 2 (variable p 2 ) H3+H3+ ArH + T trap = T H 2 (p 2 ) 500ms storage time laser on for the last 50ms ~ 500 H 3 + ions

Results p2p2 T 01 Each panel is >1 week of experiment time! Steady state verified: doubling storage time does not affect results.

Experimental complications H3+H3+ (H 3 + )* ArH + h Ar H2H2 ArH + + H 2  H Ar H 3 + regenerated during laser interaction Net effect: H 3 + o/p ratio shifted towards ArH + + H 2 value

Summary of results

Consistent with prior experiments

Possible explanations Kinetic limit: H 2  H Cosmic ray ionization H H 2  H H Fast H 3 + formation H H 2  H 2 + H Incomplete thermalization H e -  H 2 + H (or 3H) Fast recombination Thermodynamic limit “identity” “hop” “exchange” H5+H5+  = k hop /k exch Nonthermal outcome at low T?

Kinetic limit in diffuse clouds… Still no satisfactory explanation