Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa.

Similar presentations


Presentation on theme: "Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa."— Presentation transcript:

1 Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa Momose Kyoto University

2 Dark Clouds Low Temperature (10 K) High Density (10 4 cm -3 ) Rich in Chemistry Birth place of stars Gas(H 2 ) + Dust Ion-molecule reaction induced by cosmic-ray Inhomogeneity (Cores) Lifetime ~ 10 7 -10 8 yr

3 Characteristics of C 3 H 2 C CC HH CCC H H c-C 3 H 2 l-C 3 H 2 Widely distributed organic ring molecule in the ISM Large dipole moment  well detected! n(C 3 H 2 )/ n(H 2 ) = 10 -8 Cyclic / linear isomers  info on physical conditions Ortho/para isomers  correlation with evolution

4 o/p Abundance Ratio (analogy with H 2 ) Energy released during the formation of ortho and para-H 2 n(o-H 2 ) = (2J+1) 3 exp(-E/T) / Q n(p-H 2 ) = (2J+1) 1 exp(-E/T) / Q Formation energy » ∆ E (o ↔ p interconversion) p-H 2 + H + ↔ o-H 2 + H + + 170.5 K (0.015 eV) cf) Bond energy of H 2 = 52093 K (4.48 eV) Statistical o/p-ratio of 3 at high temperatures (T  ∞) n(o-H 2 )/n(p-H 2 )= 3 Deviation from 3 at low temperatures (T = 10 K) n(o-H 2 )/n(p-H 2 )= 9 exp(-170.5/T) at LTE at 10 K n(o-H 2 )/n(p-H 2 ) = 3.5 x 10 -7

5 o/p Ratio as a Function of Temperature (LTE) Ortho-to-para abundance ratio at LTE ~ 9 exp(-∆ E / 10 K) ∆ E(p-H 2 ↔ o-H 2 ) ∆ E(p-H 2 CO ↔ o-H 2 CO) ∆ E(p-C 3 H 2 ↔ o-C 3 H 2 ) ~ 170 K ~ 15 K ~ 9 K 1e-7 1.5 3 o/p-H2o/p-H2CO o/p-C3H2 at 10 K

6 TMC-1 Ridge Well-studied dense regions of TMC-1 cores Inhomogeneous characteristics in variations of –physical (temperature, density…) –chemical (molecular abundance) Hanawa et al. ApJ, 420, 318 (1994)

7 o/p-C 3 H 2 Observations for Cores in TMC-1 TMC-1A (2.54-3.58) TMC-1B (2.51-3.31) TMC-1C (1.70-1.88) TMC-1CP (1.25-1.58) TMC-1D (1.10-1.80) TMC-1E (2.43-3.26) (1950) NH 3 -Peak NW SE (1950) CP-Peak Morisawa et al. ApJ, in prep (2005)

8 + HX + 67% + e 100% + C 3 H + 67% o-C 3 H 2 p-C 3 H 2 33% 100% 50% 33% 100% + Y + Z + + e products | C 3 H + H | C 2 H 2 + CH | o-H 2 p-H 2 + e | C 3 H + H | C 2 H 2 + CH | p-C 3 H 3 + o-C 3 H 3 + Branching Ratios o-C 3 H 3 + p-C 3 H 3 +

9 o-C 3 H 2 + HX +  o-C 3 H 3 + : p-C 3 H 3 + I 1 = 1 I 2 =1/2 I= 3/2 I=1/2 D 1 x D 1/2 = D 3/2 + D 1/2 (2I + 1 = 4 ) : (2I + 1 = 2 ) 67% 33% p-C 3 H 2 + HX +  o-C 3 H 3 + : p-C 3 H 3 + I 1 = 1/2 I 2 =1/2 I= 3/2 I=1/2 D 1/2 x D 1/2 = D 1 + D 1/2 0% 100% Ortho, Para Conversion Branching Ratio

10 Description of models Model Parameter 1 C/O ratio 2 Metal depletion 3 Cosmic-ray ionization 4 Gas-density 5 Branching ratio 6 Combine above o-C 3 H 3 + e HX + 3 4 5 12 C, O, | S, Si product e C 3 H + H 2 o-C 3 H 2 p-C 3 H 2 C + | S +, Si + product 12 C 3 H + + p-H 2 p-C 3 H 3 + Ortho-para C 3 H 2 models

11 Initial Conditions & Variations Low-Metallic elemental abundance condition : C, O, N, H 2, and Metals (S, Si, Fe, Mg, Na, P, Cl) Cosmic-ray ionization rate = 1.3 x 10 -17 s -1 Gas-density = 10 4 cm -3 Equivalent branching ratio C 3 H 3 + + e  C 3 H 2 + H 50%  C 3 H + H 2 50% Temperature = 10 K [1] Depletion of initial abundance of C and/or O by factors of 2 [2] Depletion of initial elemental metal abundances by orders of 2 [3] Cosmic-ray ionization rate 10 -19 < 1.3 x 10 -17 s -1 < 10 -15 [4] 10 3 < n H =10 4 cm -3 < 10 6 [5] 50:50 < C 3 H 2 : C 3 H < 100:0

12 Minor Parameters [model 1-4] Highest o/p-ratio with minor parameters   C/O ratio < 0.2  Metal depletion by 2 orders of mag. than LM  Density < 10 5 cm -3  Zeta = 1.3 x10 -17 s -1 Observations A 2.54-3.58 B 2.51-3.31 E 2.43-3.26 C 1.70-1.88 D 1.10-1.80 CP 1.25-1.58

13 Branching Ratios [model 5] Highest o/p-ratio with major parameter   Extreme branching ratio of C 3 H 3 + + e  C 3 H 2 : C 3 H  C 3 H 2 neutral channel should be dominant! Observations A 2.54-3.58 B 2.51-3.31 E 2.43-3.26 C 1.70-1.88 CP 1.25-1.58 D 1.10-1.80 Models 1-4 Model 1 1.35 Model 2 1.34 Model 3 1.32 Model 4 1.32

14 Combined Models [model 6] Highest o/p-ratio   Can be enhance only up to 2.1 Observations A 2.54-3.58 B 2.51-3.31 E 2.43-3.26 C 1.70-1.88 CP 1.25-1.58 D 1.10-1.80 Models 1-5 Model 1 1.35 Model 2 1.34 Model 3 1.32 Model 4 1.32 Model 5 1.92

15 Summary of Model Results TMC-1 o/p-C 3 H 2 Comparison A 2.54-3.58 B 2.51-3.31 E 2.43-3.26 C 1.70-1.88 CP 1.25-1.58 D 1.10-1.80 Cannot reproduce The large o/p-C3H2 ratio more or less 3 Less evolved  More evolved o/p-C 3 H 2 : 3 C/O ratio : 0.4  0.2 Metal abund. : LM  2 order less than LM Standard cosmic-ray ionization rate Density : 10 4 cm -3  10 5 cm -3 Branching ratio two channels C 3 H 2 : C 3 H: 50%:50%  100%:0% Time : 10 5 yr  10 6 yr (steady-state) MORE EVOLVED LESS EVOLVED

16 Conclusion o/p-C 3 H 2 is a probe of degree of evolution of dense cloud cores Variations of parameters and those effect on the ratio are consistent with gradient of physical conditions of TMC-1 ridge Lower abundance of C 3 H by an order of magnitude than C 3 H 2 might support the dominant branching ratio of C 3 H 2 over C 3 H Still need to reproduce the more evolved cores Similar modeling attempt for the o, p-molecules (e.g. H 2 CO, H 2 ) would be helpful to confirm the spin conversion branching fraction


Download ppt "Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa."

Similar presentations


Ads by Google