LIGO-G9900XX-00-M DMT Monitor Verification with Simulated Data John Zweizig LIGO/Caltech.

Slides:



Advertisements
Similar presentations
S3/S4 BBH report Thomas Cokelaer LSC Meeting, Boston, 3-4 June 2006.
Advertisements

1 Video Processing Lecture on the image part (8+9) Automatic Perception Volker Krüger Aalborg Media Lab Aalborg University Copenhagen
Adding electronic noise and pedestals to the CALICE simulation LCWS 19 – 23 rd April Catherine Fry (working with D Bowerman) Imperial College London.
A Package For Tracking Validation Chris Meyer UC Santa Cruz July 6, 2007.
Alessandro Fois Detection of  particles in B meson decay.
Effective Bits. An ideal model of a digital waveform recorder OffsetGain Sampling Timebase oscillator Fs ADC Waveform Memory Address counter Compute Engine.
GLAST LAT ProjectI&T Meeting – Feb 12, 2003 W. Focke 1 EM timing analysis Warren Focke February 12, 2004.
1 Manipulating Digital Audio. 2 Digital Manipulation  Extremely powerful manipulation techniques  Cut and paste  Filtering  Frequency domain manipulation.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
HossamTalaat - MATLAB Course - KSU - 21/1/24 1 IEEE Student Branch - College of Engineering - KSU Getting started with Simulink By Prof. Hossam Talaat.
LIGO-G0200XX-00-M DMT Monitors: Beyond the FOM John Zweizig LIGO/Caltech LLO August 18, 2006.
Magnitude and Phase Measurements
New Features of APV-SRS-LabVIEW Data Acquisition Program Eraldo Oliveri on behalf of Riccardo de Asmundis INFN Napoli [Certified LabVIEW Developer] NYC,
PULSE MODULATION.
Pulse Modulation 1. Introduction In Continuous Modulation C.M. a parameter in the sinusoidal signal is proportional to m(t) In Pulse Modulation P.M. a.
A VOICE ACTIVITY DETECTOR USING THE CHI-SQUARE TEST
LIGO-G Z Coherent Coincident Analysis of LIGO Burst Candidates Laura Cadonati Massachusetts Institute of Technology LIGO Scientific Collaboration.
Waveburst DSO: current state, testing on S2 hardware burst injections Sergei Klimenko Igor Yakushin LSC meeting, March 2003 LIGO-G Z.
MCP checks for the H-4l mass. Outline and work program The problems: – Higgs mass difference from the  – Possible single resonant peak mass shift (with.
Introduction to MCMC and BUGS. Computational problems More parameters -> even more parameter combinations Exact computation and grid approximation become.
New data analysis for AURIGA Lucio Baggio Italy, INFN and University of Trento AURIGA.
3 May 2011 VESF DA schoolD. Verkindt 1 Didier Verkindt Virgo-LAPP CNRS - Université de Savoie VESF Data Analysis School Data Quality and vetos.
LIGO-G9900XX-00-M ITR 2003 DMT Sub-Project John G. Zweizig LIGO/Caltech.
Signals CY2G2/SE2A2 Information Theory and Signals Aims: To discuss further concepts in information theory and to introduce signal theory. Outcomes:
M. Principe, GWDAW-10, 16th December 2005, Brownsville, Texas Modeling the Performance of Networks of Gravitational-Wave Detectors in Bursts Search Maria.
S.Klimenko, August 2005, LSC, G Z Constraint likelihood analysis with a network of GW detectors S.Klimenko University of Florida, in collaboration.
Introduction to Digital Signals
LIGO- G D Burst Search Report Stan Whitcomb LIGO Caltech LSC Meeting LIGO1 Plenary Session 18 August 2003 Hannover.
SIMULINK-Tutorial 1 Class ECES-304 Presented by : Shubham Bhat.
HACR at Virgo: implementation and results Gabriele Vajente 12 th ILIAS WG1 meeting Geneva, March 29 th -30 th 2007.
S.Klimenko, LSC March, 2001 Update on Wavelet Compression Presented by S.Klimenko University of Florida l Outline Ø Wavelet compression concept E2 data.
Offline Status Report A. Antonelli Summary presentation for KLOE General Meeting Outline: Reprocessing status DST production Data Quality MC production.
May 29, 2006 GWADW, Elba, May 27 - June 21 LIGO-G0200XX-00-M Data Quality Monitoring at LIGO John Zweizig LIGO / Caltech.
S.Klimenko, LSC, August 2004, G Z BurstMon S.Klimenko, A.Sazonov University of Florida l motivation & documentation l description & results l.
S.Klimenko, G Z, March 20, 2006, LSC meeting First results from the likelihood pipeline S.Klimenko (UF), I.Yakushin (LLO), A.Mercer (UF),G.Mitselmakher.
LIGO-G Z Confidence Test for Waveform Consistency of LIGO Burst Candidate Events Laura Cadonati LIGO Laboratory Massachusetts Institute of Technology.
1 Oct 2009Paul Dauncey1 Status of 2D efficiency study Paul Dauncey.
Data Analysis Algorithm for GRB triggered Burst Search Soumya D. Mohanty Center for Gravitational Wave Astronomy University of Texas at Brownsville On.
S.Klimenko, March 2003, LSC Burst Analysis in Wavelet Domain for multiple interferometers LIGO-G Z Sergey Klimenko University of Florida l Analysis.
LIGO-G Z GWDAW9 December 17, Search for Gravitational Wave Bursts in LIGO Science Run 2 Data John G. Zweizig LIGO / Caltech for the LIGO.
LIGO-G Z SenseMonitor Updates for S3 Patrick Sutton LIGO-Caltech.
Search for bursts with the Frequency Domain Adaptive Filter (FDAF ) Sabrina D’Antonio Roma II Tor Vergata Sergio Frasca, Pia Astone Roma 1 Outlines: FDAF.
S.Klimenko, December 2003, GWDAW Burst detection method in wavelet domain (WaveBurst) S.Klimenko, G.Mitselmakher University of Florida l Wavelets l Time-Frequency.
Results From the Low Threshold, Early S5, All-Sky Burst Search Laura Cadonati for the Burst Group LSC MIT November 5, 2006 G Z.
Peter Shawhan The University of Maryland & The LIGO Scientific Collaboration Penn State CGWP Seminar March 27, 2007 LIGO-G Z Reaching for Gravitational.
LIGO-G Z r statistics for time-domain cross correlation on burst candidate events Laura Cadonati LIGO-MIT LSC collaboration meeting, LLO march.
LSC Meeting, 10 Nov 2003 Peter Shawhan (LIGO/Caltech)1 Inspiral Waveform Consistency Tests Evan Ochsner and Peter Shawhan (U. of Chicago) (LIGO / Caltech)
LIGO- G Z AJW, Caltech, LIGO Project1 A Coherence Function Statistic to Identify Coincident Bursts Surjeet Rajendran, Caltech SURF Alan Weinstein,
DAQ Errors John Zweizig LIGO/Caltech LSC Analysis Meeting Tufts June 6, 2004.
Comparison of filters for burst detection M.-A. Bizouard on behalf of the LAL-Orsay group GWDAW 7 th IIAS-Kyoto 2002/12/19.
LIGO-G Z TFClusters Tuning for the LIGO-TAMA Search Patrick Sutton LIGO-Caltech.
S.Klimenko, LSC, Marcht 2005, G Z BurstMon diagnostic of detector noise during S4 run S.Klimenko University of Florida l burstMon FOMs l S4 run.
LIGO-G E Data Simulation for the DMT John Zweizig LIGO/Caltech.
LIGO-G v1 Searching for Gravitational Waves from the Coalescence of High Mass Black Hole Binaries 2014 LIGO SURF Summer Seminar August 21 st, 2014.
LIGO- G Z 11/13/2003LIGO Scientific Collaboration 1 BlockNormal Performance Studies John McNabb & Keith Thorne, for the Penn State University.
1 D *+ production Alexandr Kozlinskiy Thomas Bauer Vanya Belyaev
Learning from the Past, Looking to the Future James R. (Jim) Beaty, PhD - NASA Langley Research Center Vehicle Analysis Branch, Systems Analysis & Concepts.
A radar data simulator for SuperDARN A.J. Ribeiro, P.V. Ponomarenko, J.M. Ruohoniemi, J.B.H. Baker, L.B.N. Clausen, R.A. Greenwald /29/2012 SuperDARN.
EZDC spectra reconstruction and calibration
Targeted Searches using Q Pipeline
OptiSystem-MATLAB data formats (Version 1.0)
OptiSystem-MATLAB data interchange model and features
SLOPE: A MATLAB Revival
Coherent Coincident Analysis of LIGO Burst Candidates
Software Verification and Validation
Software Verification and Validation
Inspiral Waveform Consistency Tests
Software Verification and Validation
CSE 1020:Software Development
M. Kezunovic (P.I.) S. S. Luo D. Ristanovic Texas A&M University
Presentation transcript:

LIGO-G9900XX-00-M DMT Monitor Verification with Simulated Data John Zweizig LIGO/Caltech

LIGO-G9900XX-00-M Verification: Current Practices Test trigger generation using IFO data »Noise is correct »Difficult to verify calculations Manual ID of “non-gaussian” events »Good feel for data, but »Tedious – error prone »Limited samples – not thorough »Difficult to quantify efficiencies, resolutions  Important but insufficient verification

LIGO-G9900XX-00-M Verification with Simulated Data Test with real IFO or generated noise »Intermediate result distributions know for generated noise »Can test effect of specific features (e.g. lines) Inject known trigger sources »Measure efficiency vs. F, Amplitude, width, etc. »Measure efficiency for different waveforms (sine gaussian, gaussian noise burst, damped sine, etc.) »Measure resolution of inferred parameters (t, F, etc.).

LIGO-G9900XX-00-M DMT Simulation Package DMTGen Features: »Combines discrete signals with continuous background noise (generated or from frames) »Write output data to frames (looks like raw data) »Stand-alone program (no coding, compilation or re- scripting) »Simple control syntax »Event parameters and signals recorded in output frames »Arbitrary filtration/delay »Fast:

LIGO-G9900XX-00-M DMTGen Control Syntax Parameter definitions »Set run parameter values Filter Statements »Define filters, delays, etc. Source definitions »Define continuous or discrete data sources »Specify timing, enable saving to frames Channel definitions »Channels are a sum of sources, written to output frame # These parameters define the times for the generated data. # Parameter StartGPS Parameter EndGPS # # Define a source of background white gaussian noise # Source GS WhiteNoise(A=2.0) # # Define a source of periodic noise bursts. These will be produced # with varying amplitudes (dN/dA ~ A^{-2}) and a width (sigma) of # 10ms. The time of the burst will be random with an average rate # of 0.2 Hz. Note the -simevent flags causes DMTGen to write a # description of each generated even to the output frame # Source GB GaussBurst(A=power(-2,2),Sigma=0.010) -rate 0.2 -simevent # # Write a channel called "L1:LSC-AS_Q" consisting of the sum of the # Background noise and data sources. # Channel L1:LSC-AS_Q GS GB #

LIGO-G9900XX-00-M Discrete Signal Sources Analytic functions »SinGauss(A, F, Q, Phi, Width) »DampedSine(A, F, Q, Phi, Width) »GaussBurst(A, Sigma, Width) Single injections, constant or random time separation. Fixed, random function parameters, optionally recorded in frame. Event data recorded in FrSimData structures (optional) Arbitrary filtration or delay applied individually.

LIGO-G9900XX-00-M Waveform Parameter Generation Parameter distributions »Constant or string »flat(min, max): dN/dx ~ k »step(x 0, x max,  ): –x = x 0, x 0 + , x 0 +2 , …, x max »xstep(x 0, x max,  ): –x = x 0, x 0 , x 0  2, …, x max »gauss( , ): –dN/dx ~ exp(–(x- ) 2 /2  2 ) »power(b, min, max): –dN/dx ~ x b »exp(b, min, max): dN/dx ~ e -bx

LIGO-G9900XX-00-M Background Noise Generation Continuous waveform sources »WhiteNoise(A) »Sine(A, F, Phi) »FrameData(Channel, Files)

LIGO-G9900XX-00-M MatchTrig - Trigger Checking Assign each generated event to the nearest trigger. »Triggers are read from Monitor xml output file or Data Base. »Event parameters are recorded by DMTGen in frames. Plot trigger efficiency versus: »Amplitude, frequency, other generation parameters »Time since previous event Plot reconstructed parameter resolution »Time, amplitude, frequency versus generated parameters

LIGO-G9900XX-00-M MatchTrig – PSLmon results

LIGO-G9900XX-00-M Writing Verifiable Trigger Code Start with finest ingredients (verified components) Look at every cut quantity »Histograms or spectra of intermediate results »Trip counters after each cut Measure trigger efficiency versus generated signal parameters Measure t, F, A resolution Verify significance calculations: »Trigger rate for gaussian noise should be SR/erf(  thresh )

LIGO-G9900XX-00-M Summary We neeed to improve on current techniques of DMT trigger generator verification. DMTgen provides easily understood data for use in verifying DMT code. MatchTrig compares trigger results to generated event parameters – gives efficiencies and resolution. Verification of histograms of intermediate results is facilitated by using known input distributions.