Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Acid-Base Equilibria and Solubility Equilibria
Advertisements

Acid-Base Equilibria and Solubility Equilibria
Solubility Equilibria
AQUEOUS EQUILIBRIA AP Chapter 17.
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Applications of Aqueous Equilibria
Acid-Base Equilibria and Solubility Equilibria Chapter
Copyright McGraw-Hill Chapter 17 Acid-Base Equilibria and Solubility Equilibria Insert picture from First page of chapter.
A CIDS AND B ASES II IB C HEMISTRY G R.12 Topic 18 1 Chem2_Dr. Dura.
CHM 112 Summer 2007 M. Prushan Acid-Base Equilibria and Solubility Equilibria Chapter 16.
Chapter 16: Applications of Aqueous Equilibria Renee Y. Becker Valencia Community College 1.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Updates Assignment 06 is due Mon., March 12 (in class) Midterm 2 is Thurs., March 15 and will cover Chapters 16 & 17 –Huggins 10, 7-8pm –For conflicts:
Additional Aqueous Equilibria CHAPTER 16
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Updates Assignment 06 is due Mon., March 12 (in class) Midterm 2 is Thurs., March 15 and will cover Chapters 16 & 17 –Huggins 10, 7-8pm –For conflicts:
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Aqueous Equilibria Chapter 17 HW problems: 3, 5, 14, 15, 16, 23, 24, 27a, 28a, 31, 37, 43, 45, 51, 57.
Aqueous Equilibria. The __________________________ is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved.
Acid-Base and Solubility Equilibria Common-ion effect Buffer solutions Acid-base titration Solubility equilibria Complex ion formation Qualitative analysis.
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Dr. Ali Bumajdad.
(equimolar amounts of acid and base have reacted)
Chapter 15 Applications of Aqueous Equilibria Addition of base: Normal human blood pH is 7.4 and has a narrow range of about +/- 0.2.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria (Buffers ) Green & Damji Chapter 8, Section 18.2 Chang Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required.
C h a p t e rC h a p t e r C h a p t e rC h a p t e r 16 Applications of Aqueous Equilibria Chemistry 4th Edition McMurry/Fay Chemistry 4th Edition McMurry/Fay.
Chapter 17 Additional Aspects of Aqueous Equilibria Subhash Goel South GA State College Douglas, GA © 2012 Pearson Education, Inc.
Chapter 17 Additional Aspects of Aqueous Equilibria
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Strong base neutralizes weak acid Strong acid neutralizes weak base.
Acid-Base Equilibria Chapter 16. The __________________is the shift in equilibrium caused by the addition of a compound having an __________in common.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Solubility Equilibria 16.6 AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ]K sp is the solubility product constant MgF 2 (s) Mg 2+ (aq) + 2F - (aq)
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Atkins & de Paula: Elements of Physical Chemistry: 5e
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Semester 2/2014 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
Acid-Base Equilibria and Solubility Equilibria Chapter 16.
University Chemistry Chapter 12: Acid-Base Equilibria and Solubility Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Solubility Equilibria
NH4+ (aq) H+ (aq) + NH3 (aq)
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Buffers Titrations and the Henderson Hasselbach Equation
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Solubility Equilibria
Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Aqueous Equilibria Chapter 17
Presentation transcript:

Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The ____________________________________ is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance. The presence of a common ion __________ the ionization of a weak acid or a weak base. Consider mixture of CH 3 COONa (strong electrolyte) and CH 3 COOH (weak acid). CH 3 COONa (s) Na + (aq) + CH 3 COO - (aq) CH 3 COOH (aq) H + (aq) + CH 3 COO - (aq) 17.2

Consider mixture of salt NaA and weak acid HA. HA (aq) H + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) K a = [H + ][A - ] [HA] [H + ] = K a [HA] [A - ] -log [H + ] = -log K a - log [HA] [A - ] -log [H + ] = -log K a + log [A - ] [HA] pH = pK a + log [A - ] [HA] pK a = Henderson-Hasselbalch equation 17.2 pH = pK a + log [ ]

What is the pH of a solution containing 0.30 M HCOOH and 0.52 M HCOOK? HCOOH (aq) H + (aq) + HCOO - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x x x Common ion effect 0.30 – x  x  0.52 pH = pK a + log [HCOO - ] [HCOOH] HCOOH pK a = 3.77 pH = log [0.52] [0.30] = _______ 17.2 Mixture of weak acid and conjugate base!

A ______________ solution is a solution of: 1.A weak acid or a weak base and 2.The salt of the weak acid or weak base Both must be present! A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base Add strong acid H + (aq) + CH 3 COO - (aq) CH 3 COOH (aq) Add strong base OH - (aq) + CH 3 COOH (aq) CH 3 COO - (aq) + H 2 O (l) Consider an equimolar mixture of CH 3 COOH and CH 3 COONa

HCl H + + Cl - HCl + CH 3 COO - CH 3 COOH + Cl

Which of the following are buffer systems? (a) KF/HF (b) KBr/HBr, (c) Na 2 CO 3 /NaHCO 3 (a) KF is a weak acid and F - is its conjugate base (b) HBr is a strong acid (c) CO 3 2- is a weak base and HCO 3 - is its conjugate acid 17.3

= 9.20 Calculate the pH of the 0.30 M NH 3 /0.36 M NH 4 Cl buffer system. What is the pH after the addition of 20.0 mL of M NaOH to 80.0 mL of the buffer solution? NH 4 + (aq) H + (aq) + NH 3 (aq) pH = pK a + log [NH 3 ] [NH 4 + ] pK a = 9.25 pH = log [0.30] [0.36] = 9.17 NH 4 + (aq) + OH - (aq) H 2 O (l) + NH 3 (aq) start (moles) end (moles) pH = log [0.25] [0.28] [NH 4 + ] = final volume = 80.0 mL mL = 100 mL [NH 3 ] =

Chemistry In Action: Maintaining the pH of Blood 17.3

______________________ In a ______________________ a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete. __________ point – the point at which the reaction is complete ______________ – substance that changes color at (or near) the equivalence point Slowly add base to unknown acid UNTIL The indicator changes color (pink) 4.7

Strong Acid-Strong Base Titrations NaOH (aq) + HCl (aq) H 2 O (l) + NaCl (aq) OH - (aq) + H + (aq) H 2 O (l) 17.4

Weak Acid-Strong Base Titrations CH 3 COOH (aq) + NaOH (aq) CH 3 COONa (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l) CH 3 COO - (aq) + H 2 O (l) OH - (aq) + CH 3 COOH (aq) At equivalence point (pH > 7): 17.4

Strong Acid-Weak Base Titrations HCl (aq) + NH 3 (aq) NH 4 Cl (aq) NH 4 + (aq) + H 2 O (l) NH 3 (aq) + H + (aq) At equivalence point (pH < 7): 17.4 H + (aq) + NH 3 (aq) NH 4 Cl (aq)

Exactly 100 mL of 0.10 M HNO 2 are titrated with a 0.10 M NaOH solution. What is the pH at the equivalence point ? HNO 2 (aq) + OH - (aq) NO 2 - (aq) + H 2 O (l) start (moles) end (moles) NO 2 - (aq) + H 2 O (l) OH - (aq) + HNO 2 (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx [NO 2 - ] = = 0.05 M Final volume = 200 mL K b = [OH - ][HNO 2 ] [NO 2 - ] = x2x x = 2.2 x – x  0.05x  1.05 x = [OH - ] pOH = 5.98 pH = 14 – pOH = 8.02

Acid-Base Indicators HIn (aq) H + (aq) + In - (aq)  10 [HIn] [In - ] Color of acid (HIn) predominates  10 [HIn] [In - ] Color of conjugate base (In - ) predominates 17.5

pH 17.5

The titration curve of a strong acid with a strong base. 17.5

Which indicator(s) would you use for a titration of HNO 2 with KOH ? Weak acid titrated with strong base. At equivalence point, will have conjugate base of weak acid. At equivalence point, pH > 7 Use cresol red or phenolphthalein 17.5

Solubility Equilibria 17.6 AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ]K sp is the ___________________________ MgF 2 (s) Mg 2+ (aq) + 2F - (aq) K sp = [Mg 2+ ][F - ] 2 Ag 2 CO 3 (s) 2Ag + (aq) + CO (aq) K sp = [Ag + ] 2 [CO ] Ca 3 (PO 4 ) 2 (s) 3Ca 2+ (aq) + 2PO (aq) K sp = [Ca 2+ ] 3 [PO ] 2 Dissolution of an ionic solid in aqueous solution: Q = K sp Saturated solution Q < K sp Unsaturated solution Q > K sp Supersaturated solution

17.6

_______________________________ (mol/L) is the number of moles of solute dissolved in 1 L of a saturated solution. _______________________________ (g/L) is the number of grams of solute dissolved in 1 L of a saturated solution. 17.6

What is the solubility of silver chloride in g/L ? AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ] Initial (M) Change (M) Equilibrium (M) s+s +s+s ss K sp = s 2 s = K sp  s = 1.3 x [Ag + ] = 1.3 x M [Cl - ] = 1.3 x M Solubility of AgCl = 1.3 x mol AgCl 1 L soln g AgCl 1 mol AgCl x = 1.9 x g/L K sp = 1.6 x

If 2.00 mL of M NaOH are added to 1.00 L of M CaCl 2, will a precipitate form? 17.6 The ions present in solution are Na +, OH -, Ca 2+, Cl -. Only possible precipitate is Ca(OH) 2 (solubility rules). Is Q > K sp for Ca(OH) 2 ? [Ca 2+ ] 0 = M [OH - ] 0 = 4.0 x M K sp = [Ca 2+ ][OH - ] 2 = 8.0 x Q = [Ca 2+ ] 0 [OH - ] 0 2 = 0.10 x (4.0 x ) 2 = 1.6 x Q < K sp No precipitate will form

What concentration of Ag is required to precipitate ONLY AgBr in a solution that contains both Br - and Cl - at a concentration of 0.02 M? AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ] K sp = 1.6 x AgBr (s) Ag + (aq) + Br - (aq) K sp = 7.7 x K sp = [Ag + ][Br - ] [Ag + ] = K sp [Br - ] 7.7 x = = 3.9 x M [Ag + ] = K sp [Cl - ] 1.6 x = = 8.0 x M 3.9 x M < [Ag + ] < 8.0 x M

The Common Ion Effect and Solubility The presence of a common ion decreases the solubility of the salt. What is the molar solubility of AgBr in (a) pure water and (b) M NaBr? AgBr (s) Ag + (aq) + Br - (aq) K sp = 7.7 x s 2 = K sp s = 8.8 x NaBr (s) Na + (aq) + Br - (aq) [Br - ] = M AgBr (s) Ag + (aq) + Br - (aq) [Ag + ] = s [Br - ] = s  K sp = x s s = 7.7 x

pH and Solubility The presence of a common ion decreases the solubility. Insoluble bases dissolve in acidic solutions Insoluble acids dissolve in basic solutions Mg(OH) 2 (s) Mg 2+ (aq) + 2OH - (aq) K sp = [Mg 2+ ][OH - ] 2 = 1.2 x K sp = (s)(2s) 2 = 4s 3 4s 3 = 1.2 x s = 1.4 x M [OH - ] = 2s = 2.8 x M pOH = 3.55 pH = At pH less than Lower [OH - ] OH - (aq) + H + (aq) H 2 O (l) Increase solubility of Mg(OH) 2 At pH greater than Raise [OH - ] Decrease solubility of Mg(OH)

Complex Ion Equilibria and Solubility A _______________________ is an ion containing a central metal cation bonded to one or more molecules or ions. Co 2+ (aq) + 4Cl - (aq) CoCl 4 (aq) 2- K f = [CoCl 4 ] [Co 2+ ][Cl - ] 4 2- The ______________________________________ is the equilibrium constant for the complex ion formation. Co(H 2 O) 6 2+ CoCl KfKf stability of complex

17.10

17.11

Qualitative Analysis of Cations 17.11

Flame Test for Cations lithium sodium potassiumcopper 17.11

Chemistry In Action: How an Eggshell is Formed Ca 2+ (aq) + CO 3 2- (aq) CaCO 3 (s) H 2 CO 3 (aq) H + (aq) + HCO 3 - (aq) HCO 3 - (aq) H + (aq) + CO 3 2- (aq) CO 2 (g) + H 2 O (l) H 2 CO 3 (aq) carbonic anhydrase