Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris, 5.10.2007.

Slides:



Advertisements
Similar presentations
GUINEA-PIG: A tool for beam-beam effect study C. Rimbault, LAL Orsay Daresbury, April 2006.
Advertisements

Pair backgrounds for different crossing angles Machine-Detector Interface at the ILC SLAC 6th January 2005 Karsten Büßer.
27 June 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit ILC BDS 27 June 06.
Backgrounds and Forward Region Backgrounds and Forward Region FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Beam Monitoring from Beam Strahlung work by summer students  Gunnar Klämke (U Jena, 01)  Marko Ternick (TU Cottbus, 02)  Magdalena Luz (HU Berlin, 03)
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Simulation of Beam-Beam Background at CLIC André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing 1.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
19 July 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit (via Eric Torrence) VLCW06 19 July 06.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
Hongbo Zhu, Qinglei Xiu, Xinchou Lou (IHEP) On behalf of the CEPC study group ICFA Advanced Beam Dynamics Workshop: Higgs Factory (HF2014) 9-12 October.
Beam Monitoring from Beam Strahlung new work by summer students  Magdalena Luz (HU)  Regina Kwee (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
W. Morse GamCal1 GamCal: a Beam-strahlung Gamma Detector for Beam Diagnostics William M. Morse Brookhaven National Lab.
16 February 2009CLIC Physics & Detectors Konrad Elsener 1... some issues regarding the forward region... (“picking up” from Lucie Linssen, 29 Sept 2008)
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
The Very Forward Region of the ILC Detectors Ch. Grah FCAL Collaboration TILC 2008, Sendai 04/03/2008.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Electron Identification Efficiency of the BeamCal (modified SiD02) Jack Gill, Uriel Nauenberg, Gleb Oleinik University of Colorado at Boulder 3 March 2009.
1/24 SiD FCAL Takashi Maruyama Tom Markiewicz SLAC TILC’09, Tskuba, Japan, April 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K.
Mokka simulation studies on the Very Forward Detector components at CLIC and ILC Eliza TEODORESCU (IFIN-HH) FCAL Collaboration Meeting Tel Aviv, October.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
BDIR/MDI Summary ECFA Final Plenary
BeamCal Simulation for CLIC
Summary of the FCAL Workshop Cracow, February 12-13
BDIR/MDI Summary ECFA Final Plenary
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Report about “Forward Instrumentation” Issues
Optimization of the Luminosity using Beamstrahlung Photons
Beamdiagnostics by Beamstrahlung Pair Analysis
Study of e+ e- background due to beamstrahlung for different ILC parameter sets Stephan Gronenborn.
Calorimeters of the Very Forward Region
The Very Forward Region of the ILC Detectors
GLD IR optimization and background study
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,

05-Oct-2007C.Grah: Beamdiagnostics2 Overview  Very Forward Region and BeamCal  Fast beam parameter reconstruction using the Geant4 based simulation BeCaS  Possible reduction of information for beamdiagnostics (readout electronics)  Including Beamstrahlung photons  Summary and plans

05-Oct-2007C.Grah: Beamdiagnostics3 The Forward Region e.g. LDC BeamCal will be hit by a large amount of electron-positron pairs stemming from beamstrahlung.

05-Oct-2007C.Grah: Beamdiagnostics4 BeamCal Details BeamCal: 4 < θ < 28 mrad e-e- e+e+ e-e- e-e- γ Creation of beamstrahlung (N phot ~ O(1) per bunch particle δ BS ~ O(1%) energy loss) BeamCal: sandwich em. calorimeter Length = 30 X 0 3.5mm W +.5mm radiation hard sensor ~ channels of ~0.8 R M ~ 1.5 cm < R < ~10(+2) cm Each sensor layer divided into 8-9 sectors. Space for electronics 20mrad DID

05-Oct-2007C.Grah: Beamdiagnostics5 Requirements on BeamCal  Efficiently detect single high energetic particles at lowest polar angles.  Shield the Inner Detector against backscattering from beamstrahlung pairs.  Use the pair background signal to improve the accelerator parameters. –The spatial distribution of the energy deposition from beamstrahlung pairs contains a lot of information about the collision. –Use a fast algorithm to extract beam parameters like: beam sizes (σ x, σ y and σ z ) emittances (ε x and ε y ) offsets (Δ x and Δ y ) waist shifts (w x and w y ) angles and rotation (α h, α v and φ) Particles per bunch (N b )

05-Oct-2007C.Grah: Beamdiagnostics6 Concepts of the Beamstrahlung Pair Analysis Simulate Collision with Guineapig 1.) nominal parameter set 2.) with variation of a specific beam parameter (e.g. σ x, σ y, σ z, Δσ x, Δσ y, Δσ z ) G.White: 2 nd order dependencies Produce photon/pair output ASCII File Extrapolate pairs to BeamCal front face and determine energy deposition (geometry and magnetic field dependent) Run full GEANT4 simulation BeCaS and calculate energy deposition per cell (geometry and magnetic field dependent) Calculate Observables and write summary file Calculate Observables and write summary file Do the parameter reconstruction using 1.) linear approximation (Moore Penrose Inversion Method) 2.) using fits to describe non linear dependencies A.Stahl: beammon.f A.Sapronov: BeCaS1.0 LC-DET Diagnostics of Colliding Bunches from Pair Production and Beam Strahlung at the IP Achim Stahl

05-Oct-2007C.Grah: Beamdiagnostics7 Geant 4 Simulation - BeCaS  A Geant4 (4.8.0) BeamCal simulation has been set up (A.Sapronov).  BeCaS can be configured using a configuration file to run with: –different crossing angles: 0, 2, 14, 20mrad corresponding geometry is chosen –various magnetic field types (solenoid, (Anti) DID, use field map) –detailed material composition of BeamCal including sensors with metallization, absorber, PCB, air gap –Root tree output containing energy deposition per cell  Also used to determine radiation levels. TID ≤ 10 MGy/a NIEL (in work) 20mrad Dose (MGy/a) Layer 6

05-Oct-2007C.Grah: Beamdiagnostics8 Moore Penrose Method Observables Δ BeamPar Taylor Matrix nom = + *  observables: – total energy – first radial moment – inv. radial moment – l/r, u/d, diag asymmetries – E(ring ≥ 4) / Etot – E / N – phi moment – inv. phi moment – f/b asymmetries –total photon enegery (extern)  beam parameters (diff and av) –bunch sizes –emittances –beam offsets –waist shifts –bunch rotations –profile rotations –number of particles

05-Oct-2007C.Grah: Beamdiagnostics9 1 st order Taylor Matrix beam parameter i [au] observable j [au] parametrization (polynomial) 1 point = 1 bunch crossing by guinea-pig slope at nom. value  taylor coefficient i,j

05-Oct-2007C.Grah: Beamdiagnostics10 Beam Parameter Reconstruction 2mrad (old)20mrad DID20mrad DID + Ephot 14mrad antiDID + Ephot BPUnitNom. μσμσμσμσ σzσz μmμm εxεx m rad ΔxΔxnm αxαx rad Single parameter reconstruction using whole calorimeter data A.Sapronov Photon energy can be provided by GamCal.

05-Oct-2007C.Grah: Beamdiagnostics11 GamCal – Using Photon Information  Use as much information about the collision as possible.  BeamCal measures the energy of pairs originating from beamstrahlung.  GamCal will measure the energy of the beamstrahlung photons. 1. Investigate correlation to learn how we can improve the beamdiagnostics and 2. define a signal proportional to the luminosity which can be fed to the feedback system. G.White QMUL/SLAC RHUL & Snowmass presentation position and angle scan Simulation of the Fast Feedback System of the ILC. 1.Standard procedur (using BPMs) 2.Include pair signal (N) as additional input to the sytsem Increase of luminosity of %

05-Oct-2007C.Grah: Beamdiagnostics12 Vertical Offset (y-direction) Studies by M.Ohlerich complementary information from 1.total photon energy vs offset_y 2.BeamCal pair energy vs offset_y ratio of E_pairs/E_gam vs offset_y is proportional to the luminosity similar behaviour for angle_y, waist_y …

05-Oct-2007C.Grah: Beamdiagnostics13 BeamCal Electronics  Dual gain front-end  Successive approximation ADC 1/ch  Digital memory to store information of 1 train/ch  Analog addition of 32 ch for fast feedback Sensor prototype sector to data buffer readout between trains to feedback system (FONT) real time + low latency! see also: EUROTeV-Memo A.Abusleme (University Stanford Dep.of EE)

05-Oct-2007C.Grah: Beamdiagnostics14 Data Reduction full detailsdigitized16 channels32 channels BPUnitNom. μσμσμσμσ σxσx μmμm Δσ x μmμm σzσz μmμm Δσ z μmμm εxεx m rad ΔxΔxnm αxαx rad Scenarios of data reduction for the reconstruction of beam parameters: use not all layers (6 th layer) use 32/16 channel clusters digitized information

05-Oct-2007C.Grah: Beamdiagnostics15 Bhabha Events  Overlayed a Bhabha event in each reconstructed event (expected: 0.13/BX) (COMPHEP) full BeamCal no bhabbhas bhabhas BPUnitNom. μσμσ σxσx μmμm Δσ x μmμm σzσz μmμm Δσ z μmμm εxεx m rad ΔxΔxnm

05-Oct-2007C.Grah: Beamdiagnostics16 Summary & Further Plans  BeamCal is an important part of the ILC detector: –Provides an efficient electron veto down to smallest polar angles (~5mrad) –Is carefully geometrically adjusted to keep backgrounds low –Provides fast feedback information to tune the ILC beams.  A Geant4 simulation of BeamCal (BeCaS) is ready for usage. The geometry of the forward region is for a large part parameterized.  The photon energy is a valuable information to be included in the reconstruction.  A subset of the detector information seems sufficient for beam parameter reconstruction.  Overlayed bhabhas decrease the resolution slightly.  Look on effects for a multiparameter reconstruction.  Use full detector information for MP calculation and reduced set for reconstruction. Redefine clusters.  Implement BeamCal into Mokka.  Get/use the Real Beam simulation data.