Approaches to forecasting radiation risk from Solar Energetic Particles Silvia Dalla (1), Mike Marsh (2) & Timo Laitinen (1) (1) University of Central.

Slides:



Advertisements
Similar presentations
Pete Truscott 1, Daniel Heynderickx 2, Fan Lei 3, Athina Varotsou 4, Piers Jiggens 5 and Alain Hilgers 5 (1) Kallisto Consultancy, UK; (2) DH Consultancy,
Advertisements

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
18-OCT-2005 Lyndon B. Johnson Space Center space radiation analysis group 1 Operational Aspects of Space Radiation Analysis October 18, 2005 Mark Weyland.
The Johns Hopkins University Applied Physics Laboratory SHINE 2005, July 11-15, 2005 Transient Shocks and Associated Energetic Particle Events Observed.
SEP Data Analysis and Data Products for EMMREM Mihir I. Desai & Arik Posner Southwest Research Institute San Antonio, Texas Mihir I. Desai & Arik Posner.
On the link between the solar energetic particles and eruptive coronal phenomena On the link between the solar energetic particles and eruptive coronal.
THREE-DIMENSIONAL ANISOTROPIC TRANSPORT OF SOLAR ENERGETIC PARTICLES IN THE INNER HELIOSPHERE CRISM- 2011, Montpellier, 27 June – 1 July, Collaborators:
CATANIA Feb 28th - Mar 1st 2011 F. Borsa (INAF - Osservatorio Astronomico di Brera) M. Ghigo (INAF - Osservatorio Astronomico di Brera)
Results from the GIOVE-A CEDEX Space Radiation Monitor B Taylor 1, C Underwood 1, H Evans 2, E Daly 2, G Mandorlo 2, R Prieto 2, M Falcone 2 1. Surrey.
Working Group 2 - Ion acceleration and interactions.
COMESEP: Forecasting the Space Weather Impact Norma Crosby 1, Astrid Veronig 2, Eva Robbrecht 3, Bojan Vrsnak 4, Susanne Vennerstrøm 5, Olga Malandraki.
GEANT-4/Spenvis User Meeting November 2006 Solar Energetic Particle Modelling Activities at ESA A.Glover 1, E. Daly 1,A. Hilgers 1, SEPEM Consortium 2.
03/18/091 Earth-Moon-Mars Radiation Environment Module: System Overview and Model Validation K. Kozarev, N. A. Schwadron, L. Townsend, M. Desai, M. A.
CISM SEP Modeling Background The major SEP events come from the CME-generated coronal and interplanetary shock(s) These “gradual”events can have a “prompt”
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology A New JPL Interplanetary Solar High- Energy.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
Mike Marsh; S. Dalla; T. Laitinen; M. Dierckxsens; N. B. Crosby Jeremiah Horrocks Institute, University of Central Lancashire, Preston,
Focus Topics and New Strategic Capabilities N. A. Schwadron, K. Kozarev, L. Townsend, M. Desai, M. A. Dayeh, F. Cucinotta, D. Hassler, H. Spence, M. PourArsalan,
Solar Energetic Particle Events: An Overview Christina Cohen Caltech.
System for Radiation Environment characterization (fluxes, doses, dose equivalents at Earth, Moon and Mars) on hourly thru yearly time frame Example: Snapshots.
INTERNATIONAL STANDARDIZATION ORGANIZATION TECHNICAL SPECIFICATION Space Environment (Natural and Artificial) Probabilistic model of fluences and.
Mark DierckxsensSpace Weather and Solar Energetic Particles1 M. Dierckxsens 1, K. Tziotziou 2, S. Dalla 3, I. Patsou 2, M. Marsh 3, N. Crosby 1, O. Malandraki.
C. J. Joyce, 1 N. A. Schwadron, 1 L. W. Townsend, 2 R. A. Mewaldt, 3 C. M. S. Cohen, 3 T. T. von Rosenvinge, 4 A. W. Case, 5 H. E. Spence, 1 J. K. Wilson,
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
M. Kim and F. Cucinotta Example Solar Proton Event Data NASA JSC August 30, 2006.
C. J.Joyce 1, J. B. Blake 2, A. W. Case 3, M. Golightly 1, J. C. Kasper 3, J. Mazur 2, N. A. Schwadron 1, E. Semones 4, S. Smith 1, H. E. Spence 1, L.
ESP Solar Flare Model The Problem The ESP Model of Solar Protons 11 Year Average Proton Flux Tom Diehl 06/30/2004.
Currently the Solar Energetic Particle Environment Models (SEPEM) system treats only protons within the interplanetary environment, and the shielding analysis.
1 20 January 2005: Session Summary SHINE 2006 Zermatt, Utah, 31 July - 4 August Invited Talks Riley: what was the Alfven speed in the corona at.
ESP & Psychic Solar Flare Models
Exploitation of Space Ionizing Radiation Monitoring System in Russian Federal Space Agency STRUCTURE OF THE MONITORING SYSTEM The Monitoring System includes.
1 Organ Dose and Organ Dose Equivalent Rate Calculations from October 26, 2003 (Halloween Event) Solar Energetic Particle (SEP) Event using Earth-Moon-
LIP & ESA 18121/04/NL/CH MarsREC An integrated tool for Mars Radiation Environment Characterization and Effects 5º longitude.
Earth-Moon-Mars Radiation Environment Model N. A. Schwadron, K. Kozarev, L. Townsend, M. Desai, M. A. Dayeh, F. Cucinotta, D. Hassler, H. Spence, M. Pourars,
C. J. Joyce, 1 N. A. Schwadron, 1 L. W. Townsend, 2 R. A. Mewaldt, 3 C. M. S. Cohen, 3 T. T. von Rosenvinge, 4 A. W. Case, 5 H. E. Spence, 1 J. K. Wilson,
Daniel Matthiä(1)‏, Bernd Heber(2), Matthias Meier(1),
Solar and Cosmic Ray Energetic Particle Models : Space Weather Aspects
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
THREE-DIMENSIONAL ANISOTROPIC TRANSPORT SIMULATIONS: A PARAMETER STUDY FOR THE INTERPRETATION OF MULTI-SPACECRAFT SOLAR ENERGETIC PARTICLE OBSERVATIONS.
16-20 Oct 2005SSPVSE Conference1 Galactic Cosmic Ray Composition, Spectra, and Time Variations Mark E. Wiedenbeck Jet Propulsion Laboratory, California.
Solar Storm Radiation Model (SStoRM) Prepared by: Joshua Lande–Marlboro College, VT and Ron Turner–ANSER, 2900 South Quincy Street, Suite 800, Arlington,
Solar Energetic Particles (SEP’s) J. R. Jokipii LPL, University of Arizona Lecture 2.
ITT: SEP forecasting Mike Marsh. Solar radiation storms Solar energetic particles (SEPs)
1 Giuseppe G. Daquino 26 th January 2005 SoFTware Development for Experiments Group Physics Department, CERN Background radiation studies using Geant4.
1 Test Particle Simulations of Solar Energetic Particle Propagation for Space Weather Mike Marsh, S. Dalla, J. Kelly & T. Laitinen University of Central.
Pedro Brogueira 1, Patrícia Gonçalves 2, Ana Keating 2, Dalmiro Maia 3, Mário Pimenta 2, Bernardo Tomé 2 1 IST, Instituto Superior Técnico, 2 LIP, Laboratório.
Probabilistic Solar Energetic Particle Models James H. Adams, Jr.1, William F. Dietrich 2 and Michael.A.Xapsos 3 1 NASA Marshall Space Flight Center 2.
The COMESEP Space Weather Alert System Luciano Rodriguez on behalf of the COMESEP Consortium (European Commission FP7 Project )
KISTI 2013 달 토양에서 지하 깊이에 따른 고에너지 우주선 환경 영향 분석 Jongdae Sohn, Yu Yi Dept. of Astronomy & Space Science, Chungnam National University.
Pulkkinen, A., M. Kuznetsova, Y. Zheng, L. Mays and A. Wold
Solar Energetic Particle Environment Modelling: Pre-Release of the SEPEM Project Norma Crosby1, Alexi Glover2, Angels Aran2, Cédric Bonnevie3, Clive Dyer4,
Multispacecraft observation of solar particle events contribution in the space radiation exposure on electronic equipment at different orbits Vasily S.
A joint study of the University of Göttingen (1) and Astrium (2)
T. Laitinen, S. Dalla Jeremiah Horrocks Institute, UCLan, UK
Forecasting the Perfect Storm
Solar Energetic Particle Environment Modelling: Pre-Release of the SEPEM Project Norma Crosby1, Alexi Glover2, Angels Aran2, Cédric Bonnevie3, Clive Dyer4,
Martian Radiation Env. Modelling Tools (QinetiQ)
3D Modelling of Heavy Ion SEP Propagation
Modeling the SEP/ESP Event of December 13, 2006
Earth-Moon-Mars Radiation Environment Model
Solar Flare Energy Partition into Energetic Particle Acceleration
Organizers: Mihir Desai, Joe Giacalone, Eric Christian
P. Nieminen, E. Daly, A. Mohammadzadeh, H.D.R. Evans, G. Santin
Ulysses COSPIN High Energy Telescope observations of cosmic ray and solar energetic particles intensities since its distant Jupiter flyby in 2004 R.B.
SMALL SEP EVENTS WITH METRIC TYPE II RADIO BURSTS
Heavy-Ion Acceleration and Self-Generated Waves in Coronal Shocks
LIP Lisbon We would sugest to include in the Statement of Work the following points: The development of an engineering tool to extrapolate measured solar.
Simulations of the response of the Mars ionosphere to solar flares and solar energetic particle events Paul Withers EGU meeting Vienna,
SEPEM ODI D.Heynderickx DH Consultancy BVBA, Leuven, Belgium
R-ESC.
Presentation transcript:

Approaches to forecasting radiation risk from Solar Energetic Particles Silvia Dalla (1), Mike Marsh (2) & Timo Laitinen (1) (1) University of Central Lancashire, Preston, UK (2) Met Office, Exeter, UK

Background A number of SEP forecasting models that include a description of SEP propagation have been developed in recent years Typical output of these models are SEP intensities versus time and fluences How to translate physics outputs into actual radiation impact?

Required SEP properties For calculations of radiation doses, information on the SEP energy spectrum is required up to high energies (ideally with time evolution) US NRC Report on Space Radiation Risk in the New Era of Space Exploration, 2008

Impact scenarios Effects on spacecraft electronic components Effects on humans

SEP module (obtains fluxes and fluences at a given location in the heliosphere) Magnetospheric transport module (for LEO, not discussed here) Radiation module Required components

Example approach: EMMREM Schwadron et al, 2010

EMMREM 26 Oct 2003 events GOES 1 AU observations fed to SEP transport model SEP fluxes at Mars obtained and passed to BRYNTRN code BRYNTRN calculates doses for Al shielding + 10 g/cm 2 water (simulating soft tissue in human body) (PourArsalan et al 2010)

EMMREM dose outputs PourArsalan et al, 2010

Example approach: SEPEM Radiation effects analysis tools based on the MULASSIS code (for protons) (Crosby et al 2015) Focusses on effects on spacecraft components. User specifies device geometry Input: measured SEP spectrum – can produce doses for specific events Now being extended to heavy ions

SPARX model Marsh et al, 2015 Fully 3D SEP transport model Triggered by automated detection of a solar eruptive event COMESEP Alert System

SPARX output E20 W20 W60 E>10 MeV E>60 MeV Flux profile vs time Peak flux Time of maximum flux Event duration Marsh et al, 2015

Radiation module As an initial step, calculate effective doses from protons using conversion coefficients provided by ICRP ICRP,

Conclusions Derivation of radiation doses from SEPs requires accurate spectral information over a wide energy range Unshielded radiation doses to humans in interplanetary space can be calculated by means of conversion coefficients A number of efforts on converting output parameters of physics models into impact are underway

SPARX output t = 1 hr t = 24 hr t = 48 hr t = 72 hr Marsh et al, 2015