1 Wei Liu, Tongjiang Wang, Brian Dennis, & Gordon Holman NASA Goddard Space Flight Center Evidence of Magnetic Reconnection & Existence of Current Sheet.

Slides:



Advertisements
Similar presentations
TRACE and RHESSI observations of failed eruption of magnetic flux rope and oscillating coronal loops Tomasz Mrozek Astronomical Institute University of.
Advertisements

Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Wei Liu 1, Vahé Petrosian 2, Brian Dennis 1, & Gordon Holman 1 1 NASA Goddard Space Flight Center 2 Stanford University Conjugate Hard X-ray Footpoints.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle.
The Relationship Between CMEs and Post-eruption Arcades Peter T. Gallagher, Chia-Hsien Lin, Claire Raftery, Ryan O. Milligan.
Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M.
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
TRACE Downflows and Energy Release Ayumi ASAI Kwasan Observatory, Kyoto University Magnetic Reconnection and the Dynamic Sun 9 September, Andrews.
Hard X-ray Production in a Failed Filament Eruption David, Alexander, Rui Liu and Holly R., Gilbert 2006 ApJ 653, L719 Related Paper: Ji. H. et al., 2003.
Concealed Ejecta: The Search for a Unarmed Flare Cameron Martus Solar Physics REU 2010 Montana State University Mentors Dana Longcope & Angela Des Jardins.
Hard X-rays associated with CMEs H.S. Hudson, UCB & SPRC Y10, Jan. 24, 2001.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
RHESSI Observations of the 29-Oct-2003 Flare. 29-Oct-2003 General Info 29-OCT-03 GOES Start: 20:37, Peak: 20:49, End 21:01 Size X10 Position S19W09 (AR486)
Multiwavelength Study of Magnetic Reconnection Associated with Sigmoid Eruption Chang Liu BBSO/NJIT
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Vincent Surges Advisors: Yingna Su Aad van Ballegooijen Observations and Magnetic Field Modeling of a flare/CME event on 2010 April 8.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
RHESSI OBSERVATIONS OF FLARE FOOTPOINTS AND RIBBONS H. Hudson and M. Fivian (SSL/UCB)
Observations of the failed eruption of the magnetic flux rope – a direct application of the quadrupolar model for a solar flare Tomasz Mrozek Astronomical.
Rapid Changes in the Longitudinal Magnetic Field Associated with the July gamma -ray Flare Vasyl Yurchyshyn, Haimin Wang, Valentyna Abramenko,
Hinode and the Flare/CME Connection: Events of 19 th May, 2007 J. L. Culhane University College London Mullard Space Science Laboratory UK Laura Bone,
Hard X-ray Diagnostics of Solar Eruptions H. Hudson SSL, UC Berkeley and U. Of Glasgow.
NEWS, RESOURCES, AND MOST RECENT SOLAR WORKING DRAFTS (1) Mauna Loa Solar Observatory Newsletter Feb 2009 (2) Introduction to the Solar and Space Weather.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
EUV vs. B-field Comparisons Yingna Su Smithsonian Astrophysical Observatory Coauthours: Leon Golub, Aad Van Ballegooijen, Maurice Gros. HMI/AIA Science.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Quick changes of photospheric magnetic field during flare-associated surges Leping Li, Huadong Chen, Suli Ma, Yunchun Jiang National Astronomical Observatory/Yunnan.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
September 21, 2005Peter Gallagher (UCD) Chromospheric Evaporation Peter Gallagher University College Dublin Ryan Milligan Queen’s University Belfast.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Time evolution of the chromospheric heating and evaporation process Case study of an M1.1 flare on 2014 September 6 Peter Young 1,2, Hui Tian 3, Katharine.
Coronal Dynamics - Can we detect MHD shocks and waves by Solar B ? K. Shibata Kwasan Observatory Kyoto University 2003 Feb. 3-5 Solar B ISAS.
Reconnection & Flares Part II movie courtesy of G. Stenborg.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
SH 51A-02 Evolution of the coronal magnetic structures traced by X-ray and radio emitting electrons during the large flare of 3 November 2003 N.Vilmer,
Solar Activities : Flares and Coronal Mass Ejections (CMEs) CSI 662 / ASTR 769 Lect. 04, February 20 Spring 2007 References: Aschwanden , P436-P463.
Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Direct Spatial Association of an X-Ray Flare with the Eruption of a Solar Quiescent Filament Gordon D. Holman and Adi Foord (2015) Solar Seminar on July.
Cycle 24 Meeting, Napa December 2008 Ryan Milligan NASA/GSFC Microflare Heating From RHESSI and Hinode Observations Ryan Milligan NASA-GSFC.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Shine 2004, A. Sterling CME Eruption Onset Observations: Dimmings Alphonse C. Sterling NASA/MSFC/NSSTC.
Statistical Properties of Super-Hot Solar Flares Amir Caspi †1*, Säm Krucker 2,3, Robert P. Lin 2,4,5 †
Relationships Between Flares and CME’s Monday, 23 June 2008 Monday, 23 June, 1:30pm, Grindelwald, we have 3 Invited speakers, plenty of extra time for.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Dong Li Purple Mountain Observatory, CAS
Physics of Solar Flares
Multiwavelength Study of Solar Flares Chang Liu Big Bear Solar Observatory, NJIT Seminar Day November 2, 2007.
RHESSI Working Group 4 Program – Taos workshop
RHESSI Spectral Analysis of the 1N/M1.9 flare of 20 October 2003
TRACE Downflows and Energy Release
Chromospheric and Transition Region Dynamics
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Downflow as a Reconnection Outflow
Presentation transcript:

1 Wei Liu, Tongjiang Wang, Brian Dennis, & Gordon Holman NASA Goddard Space Flight Center Evidence of Magnetic Reconnection & Existence of Current Sheet in a Partially Occulted Flare Following a Prominence Eruption Thanks to Ryan Milligan, Richard Schwartz, Yang Su, Kim Tolbert, Andy Gopie

2 GOES C-7.7 Krucker’s WIND/WAVES No electron 1 AU

3 RHESSI X-ray Spectrogram (front segments)

4 Energy by time mosaic – general trend keV Time in 1-minute intervals Impulsive phase peak (footpoints occulted by solar limb)

5 Preheating : thermal Impulsive rise: thermal+nonthermal Impulsive peak: thermal+nonthermal Decay phase: thermal

6 TRACE Lyman alpha Prominence eruption also seen in ISOON H-alpha images (not shown)

7 EIT running difference erupting prominence

8 RHESSI contours on TRACE 195 (preheating phase, note helical flux rope in lower panels)

9 RHESSI on TRACE (cont’d, impulsive rise, peak, decay phases; note cusp and current-sheet like structure after prominence eruption, & multiple X-ray sources)

10 RHESSI 8-15 peak (15:47– 15:48), on TRACE 195 (15:52, 4 minutes later) GOES-12 SXI, 15:57

11 Reconnection site Source morphology at different energies: sources shift closer at higher energies (more pronounced for the lower source)

Source position at different energies (cont’d)

13 Imaging impulsive peak Lower coronal source: T=19 MK, EM=4.9x10 47 cm -3 γ=6.4 Upper coronal sources: T=24 MK, EM=1.5x10 47 cm -3 γ=8.7

14 Summary & Discussion (1) Slow (localized) reconnection & heating developed in preheating phase, associated with activation of the prominence before its eventual eruption: * Twists – existing prior to eruption or formed via reconnection during activation? * Helicity transferred into flux rope while reconnection occurs? (2) Current sheet or jet seen in TRACE 195? * X-ray morphology suggests reconnection site in a vertical current sheet; * Lower coronal source: strong nonthermal + cooler thermal (19 MK), upper coronal sources: weak nonthermal + hotter thermal (24 MK); * T~20+ MK at peak time, much higher than Yohkoh/SXT jets (4–8 MK); (3) Prominence eruption results in vertical current sheet; consequent fast reconnection leads to impulsive phase and rapid energy release.