Magnetism of the regular and excess iron in Fe1+xTe

Slides:



Advertisements
Similar presentations
Mössbauer Spectroscopy under Magnetic Field to Explore the Low Temperature Spin Structure in a Molecular Layered Ferrimagnet A. Bhattacharjee, P. Gütlich.
Advertisements

investigated by means of the Mössbauer Spectroscopy
Spin reorientation in the Er 2-x Fe 14+2x Si 3 single-crystal studied by Mössbauer spectroscopy J. Żukrowski 1, A. Błachowski 2, K. Ruebenbauer 2, J. Przewoźnik.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
SDW Induced Charge Stripe Structure in FeTe
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Doping and Disorder in the Oxygenated, Electron-doped High-temperature Superconductor Pr 2-x Ce x CuO 4±  The building blocks of the high-temperature.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
HARMONICALLY MODULATED STRUCTURES S. M. Dubiel * Faculty of Physics and Computer Science, AGH University of Science and Technology, PL Krakow, Poland.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Crystal Structure The Na3 atoms and [CO 3 ] groups form graphite-like layers stacked in the third dimension. The Na1,2 atoms are located in the hexagonal.
High Temperature Copper Oxide Superconductors: Properties, Theory and Applications in Society Presented by Thomas Hines in partial fulfillment of Physics.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Magnetic transition in the Kondo lattice system CeRhSn2
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
CH. 2 atomic models electronic configuration oxidation numbers
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
The University of Tennessee Resonant Ultrasound Spectroscopy at The University of Tennessee Veerle Keppens Department of Materials Science and Engineering.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
M. Kopcewicz and T. Kulik a ) Institute of Electronic Materials Technology, Warszawa, Wólczyńska Street 133, Poland, a ) Faculty of Materials Science.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
An Introduction to Fe-based superconductors
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Introduction to Mineralogy Dr. Tark Hamilton Chapter 3: Lecture 7 The Chemical Basis of Minerals (sizes, shapes & directions) Camosun College GEOS 250.
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
D :06–4:18 PM Physikon Research  Notre Dame  Arizona State  NJIT Isotope Effect in High-T C Superconductors Dale R. Harshman Physikon Research.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers in Duquesne University.
Model of magnetostriction Magnetoelastic behavior of rare earth based intermetallics in high magnetic fields up to 33 T M. Doerr a, M. Rotter b, J. Brooks.
The iron-pnictide/chalcogenide (Fe-Pn/Ch) compounds have attracted intense interest recently, largely due to the observation of high-temperature superconductivity.
Spectroscopy with a Twist Infrared magneto-polarization measurements John Cerne, University at Buffalo, SUNY, DMR Hall conductivity in the high.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Emergent Nematic State in Iron-based Superconductors
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Pressure Dependence of Superconductivity of Iron Chalcogenides
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
New Materials and topological phases
Electric quadrupole interaction in cubic BCC α-Fe
Special Romp session, LT25
YTTRIUM SUBSTITUTED IRON-BASED SUPERCONDUCTORS
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
References La1111, 4.2 K, H//c and H//ab: M. Kidszun et al. Critical Current Scaling and Anisotropy in Oxypnictide Superconductors, Phys. Rev. Lett. 106,
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Pressure-induced Superconductivity in CaFe2As2 -JPCM 20, (2008)
Presentation transcript:

Magnetism of the regular and excess iron in Fe1+xTe studied by Mössbauer spectroscopy A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3, M.A. Green3, 4 1Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Kraków, Poland 2Division of Physics of Crystals, Institute of Physics, Silesian University, Katowice, Poland 3National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, U.S.A. 4Department of Materials Science and Engineering, University of Maryland, U.S.A. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- XVI National Conference on Superconductivity, 7-12 October 2013, Zakopane, Poland

Fe-based Superconducting Families pnictogens: P, As, Sb chalcogens: S, Se, Te 1111 122 111 11 LnO(F)FeAs AFe2As2 AFeAs FeTe(Se,S) Ln = La, Ce, Pr, Nd, Sm, Gd … A = Ca, Sr, Ba, Eu, K A = Li , Na Tsc max = 56 K 47 K 18 K 14 K 37 K at 9 GPa

Layered Structure of Fe-based Superconductors Spin density wave (SDW) magnetic order --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Fe1+xTe BaFe2As2 perpendicular longitudinal COMMENSURATE or INCOMMENSURATE

Spin density wave (SDW) seen by Mössbauer Spectroscopy h2n-1 – amplitudes of subsequent harmonics q – wave number of SDW x – relative position of the resonant nucleus along propagation direction of SDW SDW hyperfine field distribution 57Fe Mössbauer spectrum

Magnetic-crystallographic phase diagram Fe1+xTe x = 0.04 – 0.18 x = 0.06 , 0.10 , 0.14 , 0.18 S. Röler et al., Phys. Rev. B 84 174506 (2011) x in Fe1+xTe G.F. Chen et al., Phys. Rev. B 79 140509(R) (2009)

Fe1+yTe1-xSex Fe1+yTe1-xSx Parent Compound Fe1+yTe Doped Compound → Superconductor y ≈ 0 Fe1+yTe1-xSex Fe1+yTe1-xSx K. Katayama et al., J. Phys. Soc. Japan 79, 113702 (2010) Y. Mizuguchi et al., J. Appl. Phys. 109, 013914 (2011)

Alcoholic beverages induce superconductivity in FeTe1−xSx K. Deguchi et al., Supercond. Sci. Technol. 24, 055008 (2011) ”Some components present in alcoholic beverages, other than water and ethanol, have the ability to induce superconductivity in FeTe0.8S0.2 compound.”

Fe1.06Te regular (tetrahedral) Fe excess (interstitial) Fe 57Fe Mössbauer spectra SDW field distribution shape of SDW Fe1.06Te     regular (tetrahedral) Fe excess (interstitial) Fe SDW higher magnetic fields than SDW

Three different kinds (surroundings) of excess (interstitial) Fe. 57Fe Mössbauer spectra SDW field distribution shape of SDW Fe1.14Te SDW regular Fe    Three different kinds (surroundings) of excess (interstitial) Fe. Magnetism of the excess Fe and SDW disappear at the same transition temperature.

Fe1+xTe 65 K 4.2 K x=0.06 x=0.10 x=0.14 x=0.18 shape of SDW at 4.2 K regular Fe (SDW) excess Fe     Fe1+xTe x=0.06 x=0.10 x=0.14 x=0.18 shape of SDW at 4.2 K SDW is very sensitive to concentration of interstitial iron with relatively large localized magnetic moments.

Root mean square amplitude of SDW versus temperature The critical exponent of the mean square amplitude of SDW versus temperature indicates that the universality class is close to the (1, 2) class, i.e. the one dimension of the spin space (Ising model) and two spatial dimensions (Fe-Te layers).

Conclusions Excess (interstitial) iron with relatively large localized magnetic moment strongly influences ordering temperature, shape and amplitude of the regular iron SDW order. Despite existence of the single crystallographic site for the excess iron one sees at least three different kinds of these atoms. Such situation could occur due to the partial filling of the available interstitial sites by iron and due to some ordering (or clustering). The site with the highest magnetic hyperfine field is likely to contain almost isolated ions, i.e., surrounded by the vacancies on the interstitial sites. The magnetism of the excess iron and SDW are coupled one with another. Both kinds of magnetism disappear at the same transition temperature. Interstitial iron has relatively large localized magnetic moment. These moments interact strongly with the electrons having ability to form Cooper pairs and prevent appearance of the superconductivity. One has to remove interstitial iron to have a chance to get superconducting material. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- A. Błachowski, K. Ruebenbauer, P. Zajdel, E.E. Rodriguez, M.A. Green, Mössbauer study of the ‘11’ iron-based superconductors parent compound Fe1+xTe, J. Phys.: Condens. Matter 24, 386006 (2012)

K. Deguchi et al., Supercond. Sci. Technol. 25, 084025 (2012) Clarification as to why alcoholic beverages have the ability to induce superconductivity in Fe1+dTe1-xSx K. Deguchi et al., Supercond. Sci. Technol. 25, 084025 (2012)

K. Deguchi et al., Supercond. Sci. Technol. 25, 084025 (2012) Clarification as to why alcoholic beverages have the ability to induce superconductivity in Fe1+dTe1-xSx K. Deguchi et al., Supercond. Sci. Technol. 25, 084025 (2012) ”We found that the mechanism of inducement of superconductivity in Fe1+dTe1-xSx is the deintercalation of excess Fe from the interlayer sites.”