Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah.

Slides:



Advertisements
Similar presentations
Upper mantle of the Bohemian Massif (Central Europe) studied by surface waves from Kurile Islands M8.1 and M8.3 earthquakes Petr Kolinsky Jiri Malek Institute.
Advertisements

Geological Model Depth(km) X(km) 2001 Year.
Adaptive Grid Reverse-Time Migration Yue Wang. Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology.
Selecting Robust Parameters for Migration Deconvolution University of Utah Jianhua Yu.
Session: Computational Wave Propagation: Basic Theory Igel H., Fichtner A., Käser M., Virieux J., Seriani G., Capdeville Y., Moczo P.  The finite-difference.
1 Xuyao Zheng Institute of Geophysics of CEA. 2 Outline 1.Motivation 2.Model and synthetic data 3.Calculation of Green functions 4.Pre-stack depth migration.
Sensitivity kernels for finite-frequency signals: Applications in migration velocity updating and tomography Xiao-Bi Xie University of California at Santa.
Fluid substitution effects on seismic anisotropy Long Huang, Robert Stewart, Samik Sil, and Nikolay Dyaur Houston April 2 nd,
An Optimal Nearly-Analytic Discrete Method for 2D Acoustic and Elastic Wave Equations Dinghui Yang Depart. of Math., Tsinghua University Joint with Dr.
Interferometric Interpolation of 3D OBS Data Weiping Cao, University of Utah Oct
Prestack Migration Deconvolution Jianxing Hu and Gerard T. Schuster University of Utah.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Specular-Ray Parameter Extraction and Stationary Phase Migration Jing Chen University of Utah.
Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples H. Sun and G. T. Schuster University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
Moveout-Based Spreading Correction for Mode-Converted Waves Ellen (Xiaoxia) & Ilya.
3-D Migration Deconvolution Jianxing Hu, GXT Bob Estill, Unocal Jianhua Yu, University of Utah Gerard T. Schuster, University of Utah.
Improve Migration Image Quality by 3-D Migration Deconvolution Jianhua Yu, Gerard T. Schuster University of Utah.
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Overview of Utah Tomography and Modeling/Migration (UTAM) Chaiwoot B., T. Crosby, G. Jiang, R. He, G. Schuster, Chaiwoot B., T. Crosby, G. Jiang, R. He,
Kirchhoff vs Crosscorrelation
Stabilization of Migration Deconvolution Jianxing Hu University of Utah.
Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah.
Midyear Overview of Year 2001 UTAM Results T. Crosby, Y. Liu, G. Schuster, D. Sheley, J. Sheng, H. Sun, J. Yu and M. Zhou J. Yu and M. Zhou.
3-D PRESTACK WAVEPATH MIGRATION H. Sun Geology and Geophysics Department University of Utah.
Migration Deconvolution vs Least Squares Migration Jianhua Yu, Gerard T. Schuster University of Utah.
1 Fast 3D Target-Oriented Reverse Time Datuming Shuqian Dong University of Utah 2 Oct
MD + AVO Inversion Jianhua Yu, University of Utah Jianxing Hu GXT.
3-D Migration Deconvolution: Real Examples Jianhua Yu University of Utah Bob Estill Unocal.
Reverse-Time Migration For 3D SEG/EAGE Salt Model
1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008.
Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University.
Prestack Migration Deconvolution in Common Offset Domain Jianxing Hu University of Utah.
3D Wave-equation Interferometric Migration of VSP Free-surface Multiples Ruiqing He University of Utah Feb., 2006.
Weighted Stacking of 3-D Converted-wave Data for Birefringent Media Richard Bale.
Angle-domain Wave-equation Reflection Traveltime Inversion
Physical interpretation of DC and non-DC components of moment tensors Václav Vavryčuk Institute of Geophysics, Prague.
© 2013, PARADIGM. ALL RIGHTS RESERVED. Long Offset Moveout Approximation in Layered Elastic Orthorhombic Media Zvi Koren and Igor Ravve.
Coherence-weighted Wavepath Migration for Teleseismic Data Coherence-weighted Wavepath Migration for Teleseismic Data J. Sheng, G. T. Schuster, K. L. Pankow,
An acoustic wave equation for pure P wave in 2D TTI media Sept. 21, 2011 Ge Zhan, Reynam C. Pestana and Paul L. Stoffa.
Impact of MD on AVO Inversion
New Migration Deconvolution Filters Jianhua Yu University of Utah.
1 Local Reverse Time Migration: Salt Flank Imaging by PS Waves Xiang Xiao and Scott Leaney 1 1 Schlumberger UTAM, Univ. of Utah Feb. 8, 2008.
6. Seismic Anisotropy A.Stovas, NTNU Definition (1) Seismic anisotropy is the dependence of seismic velocity upon angle This definition yields both.
On the Physics and Simulation of Waves at Fluid-Solid Interfaces: Application to NDT, Seismic Exploration and Earthquake Seismology by José M. Carcione.
Mapping the P-S Conversion Point in VTI Media * Jianli Yang Don C. Lawton.
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Shibo Xu & Alexey Stovas, NTNU , Loucen, Czech Republic Estimation of anisotropy parameters by using the CRS approximation NTNU, Trondheim1.
Fast Least Squares Migration with a Deblurring Filter Naoshi Aoki Feb. 5,
Wave-Equation Waveform Inversion for Crosswell Data M. Zhou and Yue Wang Geology and Geophysics Department University of Utah.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
Hydro-frac Source Estimation by Time Reversal Mirrors Weiping Cao and Chaiwoot Boonyasiriwat Feb 7, 2008.
3-D Prestack Migration Deconvolution Bob Estill ( Unocal) Jianhua Yu (University of Utah)
TGS-NOPEC Geophysical Company Seismic Imaging: How we use waves to see the interior of the earth Apache Symposium on Imaging November 6, 2008 Y. C. Kim,
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
Jianhua Yu University of Utah Robust Imaging for RVSP Data with Static Errors.
Enhancing Migration Image Quality by 3-D Prestack Migration Deconvolution Gerard Schuster Jianhua Yu, Jianxing Hu University of Utah andGXT
MD+AVO Inversion: Real Examples University of Utah Jianhua Yu.
WAVEFIELD PREDICTION OF WATER-LAYER-MULTIPLES
Elastic Wavefield Extrapolation in HTI Media
The Relationship between Uncertainty and Quality in Seismic Data
The FOCI method versus other wavefield extrapolation methods
Does AVO Inversion Really Reveal Rock Properties?
Haiyan Zhang and Arthur B. Weglein
Han Yu, Bowen Guo*, Sherif Hanafy, Fan-Chi Lin**, Gerard T. Schuster
Velocity and anisotropy parameter scan
LSMF for Suppressing Multiples
Least Squares Migration
Presentation transcript:

Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah

Contents Motivation Anisotropic Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

Contents Motivation Anisotropic Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

What Blurs Seismic Images? Irregular acquisition geometry Bandwidth source wavelet Velocity errors Higher order phenomenon: Anisotropy

Anisotropic Imaging Ray-based anisotropic migration: Anisotropic velocity model Anisotropic wave-equation migration: ---Ristow et al, Han et al. 2003

Objective: High efficiency Improve image accuracy Develop 3-D anisotropic wave-equation migration method in orthorhombic model >78 wave propagator o

Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

General Wave Equation Wave equation in displacement U i : displacement component C ijkl : 4th-order stiffness tensor

Eigensystem Equation Polarization components of P-P, SV, and SH waves

Orthorhombic Anisotropic

Decoupled P plane Wave Motion Equations in (x,z) and (y,z) planes and

Decoupled P plane Wave Motion Equations in (x,z) and (y,z) planes and det

Dispersion Equations (x,z) plane (y,z) plane Thomsen’s Parameters

VTI: FFD algorithm

FFD Anisotropy Migration

How to Set Velocity and Anisotropy Parameters a & b : Optimization coefficients of Pade approximation for FD Velocity: Anisotropy:

0 5 Error % 090 Pade Approximation Comparison Angle

Error % 078 Pade Approximation Comparison Angle Beyond 78 within 0.02 %

Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

0.6 0 Kz Kx Kx Weak Anisotropy Strong Anisotropy Exact ** Approximation ** Approximation

0.3 0 Kz Kx Dispersion Equation Approximation Strong anisotropy

0 2.0 Depth (km) V/V0=3 iso New Standard

0 2.0 Depth (km) V/V0=3 Weak Aniso Strong Aniso

Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

0 0 1 Depth (km) 1.5 X (km) Velocity ( km/s)

0 0 1 Time (s) 1.5 X (km) Velocity ( km/s) 01.5 Anisotropic data (SUSYNLVFTI) Time (s) X (km) Isotropic data (SUSYNLY)

0 0 1 Depth (km) 1.5 X (km) Isotropic data Isotropic mig (su) 01.5 Anisotropic data Isotropic mig 01.5 Anisotropic data Anisotropic mig

Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

0 0 4 Depth (km) 5 X (km) Salt Model (VTI)

0 0 4 Depth (km) 5 X (km) Iso-mig

0 0 4 Depth (km) 5 X (km) VTI Aniso-mig

01.5 Anisotropy Error 40 % X (km) 0 4 Depth (km) 01.5 Anisotropy Error 10 % X (km) 01.5 Anisotropy Error 20 % X (km) Inaccurate Thomsen’s Parameters (VTI)

510 Anisotropy Error 40 % X (km) 3 4 Depth (km) 510 Anisotropy Error 10 % X (km) 510 Anisotropy Error 20 % X (km) Inaccurate Thomsen’s Parameters

Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE VTI model 3-D SEG/EAGE VTI model

0 4 Depth (km) 05 X (km) 05 VTI Aniso (y=1.5 km) Iso (y=1.5 km)

0 4 Depth (km) 05 Y (km) 05 VTI Aniso (x=1.5 km) Iso (x=1.5 km)

0 4 Depth (km) 05 Y (km) 05 VTI Aniso (x=3 km)Iso (x=3 km)

0 0 5 Y (km) 5 X (km) 05 VTI Aniso (z=0.5 km)Iso (z=0.5 km)

0 0 5 Y (km) 5 X (km) 05 VTI Aniso (z=2.5 km)Iso (z=2.5 km)

Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

Conclusions Works for 2-D and 3-D media New > 78 Anisotropic wave propagator: Improves spatial resolution Valid for VTI and TI o 78 Propagator Cost = Cost of Standard 45^ o propagator o

Thanks To 2003 UTAM Sponsors CHPC