Hot and Dense QCD Matter and Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA MLL Colloquium.

Slides:



Advertisements
Similar presentations
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Advertisements

J. RuppertHot Quarks 2006, May 2006 What does the rho? Lessons from NA60's di-muon measurement. Jörg Ruppert Nuclear Theory, Department of Physics, Duke.
Light and Heavy Hadronic Modes in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Universität Bielefeld,
Forward-Backward Correlations in Relativistic Heavy Ion Collisions Aaron Swindell, Morehouse College REU 2006: Cyclotron Institute, Texas A&M University.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
Electromagnetic Probes of the Medium (Status of the Field) Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA.
Forward-Backward Correlations in Heavy Ion Collisions Aaron Swindell, Morehouse College REU Cyclotron 2006, Texas A&M University Advisor: Dr. Che-Ming.
Heavy Quark/onium in Hot Nuclear Matter Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA INT Program (Week.
Heavy-Quark Diffusion, Flow and Recombination at RHIC
1 Particle production mechanisms from RHIC to LHC Rene Bellwied Wayne State University 23 rd International Winter Workshop on Nuclear Dynamics, Big Sky.
Nonperturbative Heavy-Quark Transport at RHIC Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van.
Theoretical Overview of Open Heavy-Flavor at RHIC and LHC Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA.
Quarkonia in Medium and their Fate at Future RHIC Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Workshop.
Finite Size Effects on Dilepton Properties in Relativistic Heavy Ion Collisions Trent Strong, Texas A&M University Advisors: Dr. Ralf Rapp, Dr. Hendrik.
Charmonium Production in Heavy-Ion Collisions Loïc Grandchamp Lawrence Berkeley National Laboratory Texas A&M, Dec. 10 th 2004 w/ R. Rapp.
Dilepton production in HIC at RHIC Energy Haojie Xu( 徐浩洁 ) In collaboration with H. Chen, X. Dong, Q. Wang Hadron2011, WeiHai Haojie Xu( 徐浩洁 )
Dileptons at RHIC Ralf Rapp Cyclotron Inst. + Physics Dept. Texas A&M University College Station, USA International CCAST Workshop “QCD and RHIC Physics”
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
1 The Quark Gluon Plasma and the Perfect Fluid Quantifying Degrees of Perfection Jamie Nagle University of Colorado, Boulder.
The Versatility of Thermal Photons and Dileptons Ralf Rapp Cyclotron Institute + Department of Phys & Astro Texas A&M University College Station, USA TPD.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Precision Probes for Hot QCD Matter Rainer Fries Texas A&M University & RIKEN BNL QCD Workshop, Washington DC December 15, 2006.
Langevin + Hydrodynamics Approach to Heavy Quark Diffusion in the QGP Yukinao Akamatsu Tetsuo Hatsuda Tetsufumi Hirano (Univ. of Tokyo) /05/09 Heavy.
Thermal Electromagnetic Radiation in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA.
Heavy Quarks + Vector Mesons in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA School of Collective.
 Mesons in Medium at RHIC + JLab Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, USA Theory Center.
Axel Drees, Stony Brook University, Lectures at Trento June 16-20, 2008 Electromagnetic Radiation form High Energy Heavy Ion Collisions I.Lecture:Study.
Chiral Symmetry Restoration in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA High.
Quarkonium Correlators in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Quarkonium Working Group.
B-3 Vaporization – 0 Introduction Generalities A central collision at relativistic energies Hadrons Hadron creation Strangeness production (1) Anisotropy.
Phenomenology of Dilepton Production in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA.
Properties of Vector Mesons in Matter - Theory and Phenomenology Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station,
Perspectives on RHIC-II: Heavy Ions and Hot+Dense Matter Ralf Rapp Texas A&M University 1. RHIC-II Science Workshop BNL,
Theory Update on Electromagnetic Probes II Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA CATHIE/TECHQM Workshop.
Dileptons and Medium Effects in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Perspectives.
Wolfgang Cassing Erice Parton dynamics and hadronization from the sQGP.
Heavy-Quark Diffusion in the Primordial Quark-Gluon Liquid Vector Mesons in Medium and Dileptons in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute.
Search for Chiral Symmetry Restoration in QCD Matter Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA HIC.
Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: F. Riek (Texas A&M), H. van Hees (Giessen), V. Greco.
Update on Search for Chiral Symmetry Restoration in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College.
HIRSCHEGG, January , 2005 Nu Xu //Talk/2005/01Hirschegg05// 1 / 24 Search for Partonic EoS in High-Energy Collisions Nu Xu Lawrence Berkeley National.
Loïc Grandchamp Lawrence Berkeley National Laboratory “Probing QCD with High Energy Nuclear Collisions” Hirschegg, Jan ’05 with H. van Hees, S.
Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA International Conference on Strangeness in Quark Matter 2008.
Comprehensive Analysis of In-Medium Quarkonia at SPS, RHIC + LHC Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College.
Interactions of Heavy Flavor in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Kavli.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
Heavy Flavor in the sQGP Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees, D. Cabrera (Madrid),
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Yukinao Akamatsu Univ. of Tokyo 2008/11/26 Komaba Seminar Ref : Y. A., T. Hatsuda and T. Hirano, arXiv: [hep-ph] 1.
05/23/14Lijuan Ruan (BNL), Quark Matter The low and intermediate mass dilepton and photon results Outline: Introduction New results on dileptons.
What have we learned from the RHIC experiments so far ? Berndt Mueller (Duke University) KPS Meeting Seoul, 22 April 2005.
Heavy Flavor in Hot QCD Matter Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Sapore Gravis.
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
Recent developments in RHIC physics Rudolph C. Hwa University of Oregon IHEP seminar June 14, 2005.
Electromagnetic Probes at the LHC Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA PANIC ‘05 Satellite Meeting.
Heavy-Flavor Interactions in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA 6 th Workshop.
Dynamics of Nucleus-Nucleus Collisions at CBM energies Frankfurt Institute for Advanced Studies Elena Bratkovskaya , CBM Workshop „ The Physics.
Heavy Flavor Theory Yukinao Akamatsu (Nagoya/KMI) 2013/07/30PHENIX PHENIX Workshop on Physics Prospects with Detector and Accelerator.
Heavy-Quark Thermalization and Resonances in the QGP Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With:
Dalitz Decays and Bremsstrahlung from in-Medium EM Spectral Functions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station,
Review of ALICE Experiments
Heavy-Flavor Transport at FAIR
Perspectives on Heavy-Flavor + EM Probes with Heavy Ions at LHCb
7/6/2018 Nonperturbative Approach to Equation of State and Collective Modes of the QGP Shuai Y.F. Liu and Ralf Rapp Cyclotron Institute + Dept. of Physics.
Yukinao Akamatsu 赤松 幸尚 (Univ. of Tokyo)
Yukinao Akamatsu Tetsuo Hatsuda Tetsufumi Hirano (Univ. of Tokyo)
QCD (Quantum ChromoDynamics)
Heavy Quark and charm propagation in Quark-Gluon plasma
Introduction of Heavy Ion Physics at RHIC
Presentation transcript:

Hot and Dense QCD Matter and Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA MLL Colloquium TU München,

1.) Introduction: Pillars of the Strong Force Stable Matter: u, d, e - m u,d ≈ 5-10 MeV But: quarks “glued” together ► Confinement proton mass M p = 940 MeV >> 3m q ≈ 20 MeV ► Mass Generation (>95% visible mass) u d u  Quantum Chromo Dynamics: “strong” coupling for Q 0.1fm) QCD vacuum filled by condensates “constituent” quark mass = g 2 /4 

hadrons overlap, quarks liberated  Deconfinement (energy density  ~ (# d.o.f )T 4,  crit ≈ 1 GeV / fm 3 )  / T4 / T4 free gas [Cheng et al ’08] 1.2 Quark-Gluon Plasma Excite vacuum (hot+dense matter) But: matter around T c strongly coupled: “sQGP” (  – 3p ≠ 0 !) - ‹0|qq|0› condensate “melts”, m q * → 0  Mass Degeneration (hadron masses?) ‹qq› T / ‹qq› vac - - 3p / T 4 Lattice QCD ’08

| | 1.3 QCD Phase Diagram and Nature Early Universe (few  s after Big Bang) Compact Stellar Objects (Neutron Stars) Unique opportunity to study: primordial Big Bang matter quark (de-) confinement and mass (de-) generation matter with smallest known viscosity (  /s): “near perfect fluid” phase structure of non-abelian gauge theory (↔ string theory!?)

1.) Introduction: QCD and QGP  Quark Confinement + Hadron Mass  Quark-Gluon Plasma + QCD Phase Diagram 2.) Experimental Probes of QCD Matter  Particle Spectra in Heavy-Ion Collisions 3.) Heavy-Quark Probes (c,b)  Heavy-Quark Diffusion in the QGP  Viscosity?! 4.) Electromagnetic Radiation  The Visible Mass in the Universe?!  Melting Vector Mesons + Dilepton Spectra 5.) Conclusions Outline

2.1 The “Little Bang” in the Laboratory Au + Au → X e + e - Questions: Thermalization? QGP Signatures?? QGP Properties???  c,b

2.2 Basic Findings at RHIC: Hadron Spectra (1) Ideal Hydrodynamics: p T ≤ 2GeV [Shuryak, Heinz, …] v 2 had  early thermalization,  0 ≤ 1fm/c ∂  T  = 0 T  = (  +P) u  u – P g  Input: equation of state  (P), initial conditions, freezeout Output: collective flow u  radial + elliptic (v 2 )

2 GeV ≤ p T ≤ 6 GeV (2) Quark Coalescence: baryon-to-meson “anomaly” “quark-number scaling” of elliptic flow [Greco et al ‘03 Fries et al ‘03, Hwa et al ’03]  hadronization via qq → M, qqq → B (instantaneous, no spatial dependence of v 2 in f q ) _  matter at RHIC thermalizes,  0 >  c, small viscosity, partonic E T - m = Ratio

2.3 Problems + Advanced Tools Key Questions: - microscopic origin of “near perfect fluid”? How “perfect”? - matter constituents / spectral functions? … Heavy Quarks (charm, bottom): created early, Brownian particle traversing QGP fluid ► transport coefficients ↔ thermalization and “flow” ► Q-Q bound states (J/ , Y) in QGP? Electromagnetic Emission (photons, dileptons): escape medium unaffected, “thermal radiation” ► dilepton invariant mass: (M ee ) 2 = (p e+ +p e  ) 2 ↔ direct access to in-medium spectral functions - c,b e+ e-e+ e- 

1.) Introduction: QCD and QGP  Quark Confinement + Hadron Mass  Quark-Gluon Plasma + QCD Phase Diagram 2.) Experimental Probes of QCD Matter  Particle Spectra in Heavy-Ion Collisions 3.) Heavy-Quark Probes (c,b)  Heavy-Quark Diffusion in the QGP  Viscosity?! 4.) Electromagnetic Radiation  The Visible Mass in the Universe?!  Melting Vector Mesons + Dilepton Spectra 5.) Conclusions Outline

3.1 The Virtue of Heavy Quarks (Q=b,c) Large scale m Q >>  QCD → “factorization” even at low p T → QQ produced in primordial N-N collisions → well “calibrated” initial spectra at all p T Large scale m Q >> T → thermal momentum p th 2 = 3m Q T >> T 2 ~ Q 2 therm. mom. transfer → Brownian motion (elastic scattering) → thermalization delayed by m Q /T  memory of rescattering Flavor conserved in hadronization → coalescence!? Elastic scattering Q 2 = q 0 2 – q 2 ~ (q 2 /2m Q ) 2 – q 2 ~ -q 2 → quasi-static potential approach!? → common framework for heavy-quark diffusion and quarkonia -

Brownian Motion: scattering rate diffusion coefficient 3.2 Heavy Quark Diffusion in the QGP Fokker Planck Eq. [Svetitsky ’88,…] Q pQCD elastic scattering:    1  =  therm ≥ 20 fm/c slow q,g c Microscopic Calculations of Diffusion [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore ‘04] D-/B-resonance model:    1  =  therm ~ 5 fm/c c “D” c _ q _ q parameters: m D, G D [van Hees+RR ’04]

3.2.2 Potential Scattering using Lattice QCD potential: use lattice QCD Q-Q internal energy (T>T c ):  T-matrix for Q-q scatt. in QGP, G qQ : Q-q propagator HQ potential concept established in vacuum (EFT, lattice) 3-D reduced Bethe-Salpeter Eq. Meson and diquark “resonances” for T ≤ 1.5 T c [Brambilla, Vairo et al]

3.3 Comparison of Drag Coefficients (Thermal Relaxation Rate) proliferation?! NB: pQCD ↔ Coulomb ↔ AdS/CFT T-matrix: Coulomb + ”string”(latQCD), resummed “melting” resonances:  relax = 1/  ~ 5-8 fm/c ~ constant T [GeV]  [1/fm] [Gubser ’06] [Peshier ‘06; Gossiaux+Aichelin ’08] [van Hees+RR ’04] [van Hees,Mannarelli, Greco+RR ’07]

3.4 Heavy Flavor Phenomenology at RHIC Medium Evolution - hydrodynamics or parameterizations thereof - realistic bulk-v 2 (~5-6%) - stop evolution after QGP; hadronic phase? Hadronization - fragmentation: c → D + X - coalescence: c + q → D, adds momentum and v 2 Semileptonic Electron Decays - D, B → e ± X, ~ conserve v 2 and R AA of parent meson - charm/bottom composition in p-p [Hirano et al ’06] → relativistic Langevin simulations of heavy quark in QGP:

3.4.2 Model Predictions vs. RHIC Data Semileptonic e ± Spectra [PHENIX ’06] c-q → D coalescence increases both R AA and v 2 radiative E-loss upscaled pQCD Langevin with resonances + coalescence Langevin with upscaled pQCD elastic (D s ~ 30/2  T) R AA ≡ (dN/dp T ) AA / (dN/dp T ) pp

no coal T-Matrix Approach vs. e ± Spectra at RHIC hadronic resonances at ~T c ↔ quark coalescence connects 2 pillars of RHIC! (strong coupl. + coalescence) [van Hees,Mannarelli,Greco+RR ’07] Spatial Diffusion D s = T/(m Q 

3.5 Viscosity in sQGP? Conjectured bound of sCFT (string-theo. methods): use heavy-quark diffusion to estimate for QGP: kinetic theory:  s ≈  n tr /s = 1/5 T D s sCFT:  s  ≈  D s    = 1/2 T D s close to  T c  [Kovtun,Son +Starinets ’05] [Lacey et al ’06] [RR+van Hees ‘08]

3.6 “Reinterpretation” of Quark Coalescence “Resonance Recombination Model”: resonance scattering q+q → M close to T c using Boltzmann eq. - [Ravagli et al ’08]  conserves energy, recovers thermal equilibrium, encodes v 2 (x) in f q (x,p) Langevin, interaction strength determines v 2 max ≈ 7% approximate scaling in K T =E T -m Quarks Mesons 2

1.) Introduction: QCD and QGP  Quark Confinement + Hadron Mass  Quark-Gluon Plasma + QCD Phase Diagram 2.) Experimental Probes of QCD Matter  Particle Spectra in Heavy-Ion Collisions 3.) Heavy-Quark Probes (c,b)  Heavy-Quark Diffusion in the QGP  Viscosity?! 4.) Electromagnetic Radiation  The Visible Mass in the Universe?!  Melting Vector Mesons + Dilepton Spectra 5.) Conclusions Outline

4.) Electromagnetic Radiation EM Correlation Function: e+ e-e+ e- Im Π em (M,q;  B,T) Dilepton Sources: Relevance: - Quark-Gluon Plasma: high mass + temp. qq → e + e , … M > 1.5GeV, T >T c - Hot + Dense Hadron Gas: M ≤ 1 GeV       → e + e , … T ≤ T c - qqqq _ e+ee+e  e+ee+e   Im Π em ~ Im D 

> >    B *,a 1,K 1... N, ,K … 4.2  -Meson in Medium: Hadronic Interactions D  (M,q;  B,T) = [M 2 - m  2 -   -   B -   M ] -1  -Propagator: [Chanfray et al, Herrmann et al, RR et al, Weise et al, Koch et al, Mosel et al, Eletsky et al, Oset et al, Lutz et al … ]   =   B,  M  = Selfenergies:  Constraints: decays: B,M→  N,  scattering:  N →  N,  A, …  B /  [RR,Wambach et al ’99]  Meson “Melting” Switch off Baryons

4.3 Dilepton “Excess” Spectra  at SPS “average”   (T~150MeV) ~ MeV    (T~T c ) ≈ 600 MeV → m  fireball lifetime:  FB ~ (6.5±1) fm/c [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08] Thermal Emission Spectrum:

4.3.2 NA60 Data vs. In-Medium Dimuon Rates acceptance-corrected data directly reflect thermal rates! M  [GeV] [RR,Wambach et al ’99] [van Hees +RR ’07]

4.3.3 Low-Mass Dileptons at RHIC: PHENIX Successful approach at SPS fails at RHIC

5.) Conclusions Strong-Interaction (QCD) Matter - Quark (de-) confinement, Mass (de-) generation - Can be studied in heavy-ion collisions - “Near perfect” liquid?! (Some) Recent Developments - non-perturbative heavy-quark diffusion above T c (“QGP liquid”) -  -resonance melts toward T c (“hadron liquid”) Upcoming Experimental Programs: - LHC (CERN), RHIC-2 (BNL), FAIR (GSI), NICA (Dubna), … - “perturbative” QGP at high T? - 1 st order transition at finite  B > 0?

3.2.3 AdS/CFT-QCD Correspondence [Gubser ‘07] match energy density (d.o.f = 120 vs. ~40) and coupling constant (heavy-quark potential) to QCD 3-momentum independent  [Herzog et al, Gubser ‘06] ≈ (4-2 fm/c) -1 at T= MeV Lat-QCD T QCD ~ 250 MeV

But: “Higgs” Mechanism in Strong Interactions: qq attraction  “Bose” condensate fills QCD vacuum Spontaneous Chiral Symmetry Breaking 3.1 Chiral Symmetry + QCD Vacuum : isospin + “chiral” (left/right-handed) invariant > > > > qLqL qRqR qLqL - qRqR - - Profound Consequences: effective quark-mass: ↔ mass generation massless Goldstone bosons  0,±, pion pole-strength f  = 93MeV “chiral partners” split,  M ≈ 0.5GeV: J P =0 ± 1 ± 1/2 ±

Weinberg Sum Rule(s) Hadron Spectra + Chiral Symm. Breaking Axial-/Vector Correlators pQCD cont. “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] ● chiral breaking: |q 2 | ≤ 1 GeV 2 Constituent Quark Mass

3.2.2 Dilepton Rates: Hadronic vs. QGP dR ee /dM 2 ~ ∫d 3 q f B (q 0 ;T) Im  em Hard-Thermal-Loop [Braaten et al ’90] enhanced over Born rate Hadronic and QGP rates “degenerate” around ~T c Quark-Hadron Duality at all M ?! (  degenerate axialvector SF!) [qq→ee] [HTL] -

Relativistic Langevin simulations for heavy quarks in QGP fireball 4.2 Heavy-Quark Spectra in Au-Au at RHIC [van Hees,Greco+RR ’05] Nuclear Modification Factor factor 3-4 stronger effects due to resonance interactions bottom quarks little affected Elliptic Flow R AA ≡ (spec) AA /(spec) pp

4.4 Heavy-Light Quark T-Matrix in QGP lattice-QCD based quark “potentials” F QQ =U QQ –T S QQ meson + diquark “resonances” up to ~1.5 T c [van Hees et al ‘08]

3.2 EM Spectral Function in Vacuum R =  (e + e  → hadrons) /  (e + e  →     ) ~ Im  em (M) Im  em ~ [Im D  + Im D  /10 + Im D  /5] M ≤ 1 GeV: non-perturbative (vector-meson resonance) M > 1.5 GeV: perturbative (qq continuum) Im  em ~  N c ∑(e q ) 2 Low-mass dilepton rate:   -meson dominated!  Im D  √s=M - e+e-e+e-  e+e-e+e- qqqq - R

3.4  Meson in Cold Nuclear Matter  + A → e + e  X  e+ ee+ e  Nuclear Photo-Production: invariant mass spectra [Riek et al ’08] Theoretical Approach: M ee  [GeV] Fe - Ti  N ≈ 0.5  0  N  elementary production amplitude in-medium  spectral function + [CLAS/JLab ‘08]

well tested at high energies, Q 2 > 1 GeV 2 : perturbation theory (  s = g 2 /4π << 1) degrees of freedom = quarks + gluons 1.2 Quantum Chromodynamics (QCD) (m u ≈ m d ≈ 5-10MeV ) [Nobel approved, 2004] Q 2 ≤ 1 GeV 2 → transition to “strong” QCD: effective d.o.f. = hadrons (Confinement) massive “constituent” quarks, m q * ≈ 350 MeV ≈ ⅓ M p (Chiral Symmetry Breaking) ↕ ⅔ fm

4.7 Q-Q Bound States in the QGP: J/  J/  + g c + c + X ← → - Suppression + Regeneration: - J/  D D - c - c reaction equilibrium rate limit Nuclear Modification Factors Centrality Dependence Momentum Dependence [Zhao+RR ’08, ‘09]

4.1 Heavy-Quarks and Single-e ± Spectra Radiative energy-loss of heavy quarks? Thermalization and collective flow? Consistency? experimental tool: electron spectra D,B → eX c,b p T [GeV/c] R AA = (AA) / (pp) Djordjevic etal. ‘04 Armesto etal.‘05 Elliptic Flow Nuclear Modification Factor radiative transport coefficient larger than theory (~ 3-5) [Armesto et al ’05] ? origin of strong interactions? bottom “contamination” ?

3-Stage Dissociation: nuclear (pre-eq) -- QGP -- HG S tot = exp[-  nuc   L] exp[-  QGP  QGP ] exp[-  HG   HG ] Regeneration in QGP + HG: microscopically: backward reaction (detailed balance!) key ingredients: reaction rate equilibrium limit (  -width) (links to lattice QCD) 4.) Heavy Quarkonia in Medium 4.1 Basic Elements and Connections to URHICs [PBM etal ’01, Gorenstein etal ’02,Thews etal ’01, Ko etal ’02, Grandchamp+RR ’02, Cassing etal ‘03] J/  + g c + c + X ← → - for thermal c-quarks and gluons:

5.) Electromagnetic Probes Thermal Photons I : SPS Expanding Fireball + pQCD pQCD+Cronin at q t >1.6GeV  T 0 =205MeV suff., HG dom. addt’l meson-Bremsstrahlung  →   K→  K  substantial at low q t [Liu+ RR’05] WA98 “Low-q t Anomaly” [Turbide,RR+Gale’04]

thermal radiation q t <3GeV ?! QGP window 1.5<q t <3GeV ?! Thermal Photons II: RHIC also:   -radiation off jets shrinks QGP window q t <2GeV ?! [Gale,Fries,Turbide,Srivastava ’04]

3.3.5 Charmonium Width+Mass from Lattice QCD [Umeda+ Matsufuru ’05] using constrained curve fitting (Breit-Wigner functions)  c and J/  Width ”jumps” across T c qualitatively consistent with partonic dissociation  c and J/  Mass essentially constant

3.5 Dilepton Spectra in Heavy-Ion Collisions (SPS) → Evolve dilepton rates over thermal fireball expansion show in-medium  broadening normalized “distorted” by exp. acceptance  +   Mass Spectra [NA60, 2005] drop. mass (norm.) M  [GeV] quantitative agreement exhibits Boltzmann slope (T) invariant-mass spectrum! Acc.-corrected  +   Spectra [NA60, 2009] M  [GeV] [van Hees+RR ’08]