Presentation is loading. Please wait.

Presentation is loading. Please wait.

Heavy-Flavor Transport at FAIR

Similar presentations


Presentation on theme: "Heavy-Flavor Transport at FAIR"— Presentation transcript:

1 Heavy-Flavor Transport at FAIR
6/4/2018 Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA HICforFAIR Workshop “Heavy-Flavor Physics with CBM” FIAS (Frankfurt, Germany),

2 1.) Introduction: Why Heavy Quarks in URHICs?
“Large” scale mQ >> LQCD, T (Q = c, b): pair production in primordial NN collisions → well defined initial condition, flavor conserved thermal relaxation time tQ~ mQ/T ~ 5-20 ≥ tfireball → incomplete thermalization, “gauge” of interaction strength simplifications in theoretical treatment → diffusion: Brownian markers of QGP → access to soft interactions in QGP / hadronization → potential theory → quantitative connections to lattice QCD → direct window on QGP transport coefficient

3 1.2 Heavy-Quark Evolution in URHICs
| | | | t [fm/c] D c initial cond. (shadowing, Cronin), pre-equil. fields c-quark diffusion in QGP liquid c-quark hadronization D-meson diffusion in hadron liquid Consistency - weak coupling: pQCD + fragmentation - strong coupling: non-pert. diffusion + recombination

4 1.3 Matter Evolution at CBM
mqch[MeV] 5 80 130 150 significant time around (even above) Tc need to control: - Q interactions with quarks - D, D and Lc interactions in hadronic matter -

5 Outline 1.) Introduction 2.) Heavy-Quark Transport in QGP
6/4/2018 Outline 1.) Introduction 2.) Heavy-Quark Transport in QGP 3.) D-Meson Transport in Hadronic Matter 4.) Hadronization 5.) Heavy-Ion Phenomenology 6.) Conclusions

6 2.) Heavy-Quark Transport Coefficient
p2 ~ mQ T >> k2 ~ T2  Brownian Motion: Q Fokker Planck Eq. thermalization rate diffusion coefficient thermal relaxation time tQ = 1/g Einstein relation: → check FP approximation spatial diffusion constant: Ds = T / g mQ relation to bulk medium: Ds (2pT) ~ h / s

7 2.1 Leading-Order Perturbative QCD
gluon exchange regularized by Debye mass: [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore‘04] 2 dominated by forward scattering off gluons thermalization time g -1 = tc ≥ 20 fm/c long (T≤ 300MeV, as=0.4)

8 2.2 Perturbative QCD with Running Coupling
run as to mD ~ gT, rather than 2pT reduced Debye mass [Peshier ‘07] [Gossiaux+ Aichelin ‘08] factor ~10 faster thermalization: tc ≈ 2-3 fm/c perturbative regime? Need to resum large diagrams…

9 2.3 T-Matrix Approach In-medium scattering amplitude
thermal 2-particle propagator: Field-theoretic potential approach: - effective propagator: Coulomb + string - fit to lattice-QCD free energy [Megias et al ‘07]

10 2.3.2 T-Matrix + Lattice-Potential Approach
heavy-light T-matrix → HQ transport [Riek+RR ’10] In-Medium Amplitude Thermalization Rate - c-q gc [1/fm] vacuum spectroscopy + pQCD limit “Feshbach” resonances in medium factor 3-4 faster than pQCD: tc ≈ 4-6 fm/c 3-momentum dependence: transition strong → weak

11 3.) D-Meson Transport in Hadronic Matter
6/4/2018 gD [fm-1] effective D-h scattering amplitudes [He,Fries+RR ’11, Tolos+Torres-Ricon ‘13] D-meson in pion gas: - consistent with unitarized HQET - factor ~10 larger in heavy-meson cPT [Cabrera et al ‘11] [Laine ‘11] gD [fm-1] hadron gas at ~Tc: tD ≈ 10fm/c

12 Summary of Charm Diffusion in Matter
6/4/2018 Hadronic Matter vs. QGP vs. Lattice QCD [He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11] AdS/QCD [Gubser ‘07] Shallow minimun around Tc ? Quark-Hadron Continuity?

13 4.) Heavy-Flavor Hadronization
Hadronization is an interaction! High pT: pQCD with fragmentation Low + Intermediate pT - heavy flavor conserved through transition - hadron formation with thermal quarks: resonant Qq recombination - same interaction as in non-pert. diffusion - contributes to equilibration! - qq c D - q D T c [Ravagli+RR ‘07]

14 5.) Charm Transport at RHIC + LHC
5.1 QGP – Hadronization – Hadronic Matter increased QGP-v2 from recombination + hadronic diffusion increased Ds-RAA from strangeness enhancement [He et al ’12]

15 5.2 Modeling of D-mesons at LHC
No single consistent description yet Perturbative approaches too weakly coupled

16 5.3 Heavy-Flavor Electrons at √s=62GeV
10% [He et al in prep] Importance of flow and Cronin at lower energies

17 6.) Conclusions Non-perturbative interactions govern heavy flavor at CBM: - Dt ~ 5fm/c around Tc and in hadronic phase Large mq / T ≥ 1 → importance of Qq interactions → Effective “potential” theory, controlled by - spectroscopy + pQCD (vacuum) - lattice QCD (finite T) In-medium hadronization: resonance correlations manifest Quantitative effective hadronic theory Implications for charmonia

18 2.3 AdS/CFT-QCD Correspondence
3-momentum independent [Herzog et al, Gubser ‘06] match energy density (d.o.f = 120 vs. ~40) and coupling constant (heavy-quark potential) to QCD Lat-QCD TQCD ~ 250 MeV ≈ (4-2 fm/c)-1 at T= MeV [Gubser ‘07]

19 3.3 Quarkonium Spectral Functions + Correlators
[Aarts et al ‘07] limiting cases: assume V=U or F [Satz et al ’01+’08, Mocsy+Petreczky ’05+’08, Wong ’06, Cabrera,Riek+RR ’06+’10, Beraudo et al ’06, Lee et al ’09, …]

20 → ← - 3.4 Quarkonium Transport J/y + q,g c + c + X - D J/y c
Rate Equation for J/y + q,g c + c + X J/y D - c reaction rate equilibrium limit (y -width) in-med properties: spectral function, encodes screening/dissociation formation sensitive to HQ distributions [cf. also Andronic et al, Zhuang et al, Ferreiro et al, …]

21 4.1 Quantitative Bulk-Medium Evolution
initial conditions (compact, initial flow?) EoS: lattice (QGP, Tc~170MeV) + chemically frozen hadronic phase spectra + elliptic flow: multistrange at Tch ~ 160MeV p, K, p, L, … at Tfo ~ 110MeV v2 saturates at Tch, good light-/strange-hadron phenomenology [He et al ’11]


Download ppt "Heavy-Flavor Transport at FAIR"

Similar presentations


Ads by Google