Reionization science from the CMB after Planck Michael Mortonson University of Chicago July 2, 2009.

Slides:



Advertisements
Similar presentations
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Advertisements

Neutrinos and Cosmology Alessandro Melchiorri Universita di Roma, La Sapienza NOW 2010, Conca-Specchiulla September 7th 2010.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Eloisa Menegoni ICRA and INFN, University of Rome “La Sapienza” Cosmological constraints on variations of fundamental constants Miami2010, Fort Lauderdale,
Planck 2013 results, implications for cosmology
CMB Decadal Study: What We Did Activities funded by NASA proposal: PI Steve Meyer + entire CMB community Workshops: The Path to CMBPOL: Upcoming Measurement.
Dust and Molecules in primordial galaxies F.-Xavier Désert, Lab. Astrophysique, Grenoble Erik Elfgren, Dept. of physics, Lulea, Sweden Early dust in the.
University of Rome “La Sapienza”
A hot topic: the 21cm line II Benedetta Ciardi MPA.
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
The Physics of the cosmic microwave background Bonn, August 31, 2005 Ruth Durrer Départment de physique théorique, Université de Genève.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Constraints on large DM annihilation cross sections from the early Universe Fabio Iocco Institut de Physique Theorique, CEA/Saclay Institut d’Astrophysique.
CMB constraints on WIMP annihilation: energy absorption during recombination Tracy Slatyer – Harvard University TeV Particle Astrophysics SLAC, 14 July.
Falsifying Paradigms for Cosmic Acceleration Michael Mortonson Kavli Institute for Cosmological Physics University of Chicago January 22, 2009.
Added science from improved measurements of T and E modes S. A. Bonometto, E. Branchini, C. Burigana, L. P. L. Colombo, J. M. Diego, R. Fabbri, F. K. Hansen,
1 On the road to discovery of relic gravitational waves: From cosmic microwave background radiation Wen Zhao Department of Astronomy University of Science.
Probing Dark Matter with the CMB and Large-Scale Structure 1 Cora Dvorkin IAS (Princeton) Harvard (Hubble fellow) COSMO 2014 August 2014, Chicago.
Large Scale Simulations of Reionization Garrelt Mellema Stockholm Observatory Collaborators: Ilian Iliev, Paul Shapiro, Marcelo Alvarez, Ue-Li Pen, Hugh.
Constraining DM scenarios with CMB Fabio Iocco Institut d’Astrophysique de Paris Institut de Physique Theorique, CEA/Saclay In collaboration with: G. Bertone,
WMAP and Polarization APS February 16, 2010 In remembrance of Andrew Lange L. Page.
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Primordial Black Holes in the Dark Ages Katie Mack (Princeton/Cambridge) with Daniel Wesley (DAMTP Cambridge)
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
US Planck Data Analysis Review 1 Lloyd KnoxUS Planck Data Analysis Review 9–10 May 2006 The Science Potential of Planck Lloyd Knox (UC Davis)
Cosmic Microwave Background Radiation: z= z= 10 David Spergel Princeton University.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
Sources of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Beijing,
CMB Polarization from Patchy Reionization Gil Holder.
Lecture 5: Matter Dominated Universe: CMB Anisotropies and Large Scale Structure Today, matter is assembled into structures: filaments, clusters, galaxies,
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Exotic Physics in the Dark Ages Katie Mack Institute of Astronomy / Kavli Institute for Cosmology, University of Cambridge.
the National Radio Astronomy Observatory – Socorro, NM
Results from Three- Year WMAP Observations Eiichiro Komatsu (UT Austin) TeV II Particle Astrophysics August 29, 2006.
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Primordial fluctuations 20  Isotropic 3K background. The most perfect blackbody we know Dipole (3.4 mK). Our motion relative to CMB.
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Reionisation and the cross-correlation between the CMB and the 21-cm line fluctuations Hiroyuki Tashiro IAS, ORSAY 43rd Rencontres de Moriond La Thuile,
Secondary Polarisation ASIAA 2005 CMB quadrupole induced polarisation from Clusters and Filaments Guo Chin Liu.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
Observation and Data Analysis Activityin SPOrt and BaR-SPOrt Exp.s Ettore Carretti Bologna 7-9 January 2004.
The Cosmic Microwave Background
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
Remote Quadrupole Measurements from Reionization Gil Holder Collaborators: Jon Dudley; Alex van Engelen (McGill) Ilian Iliev (CITA/Zurich); Olivier Dore.
CMB, lensing, and non-Gaussianities
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
Cosmological implications of the first year W ILKINSON M ICROWAVE A NISOTROPY P ROBE results Licia Verde University of Pennsylvania.
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
Detecting the CMB Polarization Ziang Yan. How do we know about the universe by studying CMB?
Precision cosmology, status and perspectives Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 FA-51 Meeting Frascati, June 22nd 2010.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Testing Primordial non-Gaussianities in CMB Anisotropies
The Cosmic Microwave Background and the WMAP satellite results
A Measurement of CMB Polarization with QUaD
Precision cosmology, status and perspectives
Recovery of The Signal from the Epoch of Reionization
Lecture 5: Matter Dominated Universe
(some) Future CMB Constraints on fundamental physics
Open Discussion 1 KIAA/PKU Reionization
Constraint on Cosmic Reionization from High-z QSO Spectra
“B-mode from space” workshop,
Presentation transcript:

Reionization science from the CMB after Planck Michael Mortonson University of Chicago July 2, 2009

Reionization Science from the CMB After Planck Outline 1 Michael Mortonson U Chicago/KICP 2 Outline July 2, 2009 Reionization report from June 2008 Fermilab CMBPol workshop: Zaldarriaga, Colombo, Komatsu, Lidz, Mortonson, Oh, Pierpaoli, Verde, & Zahn arXiv: Current reionization constraints and expected improvements from Planck and CMBPol (large-scale polarization)  optical depth  physical parameters (reionization sources)  model-independent information Separating reionization from other phenomena (e.g. inflation)

Reionization Science from the CMB After Planck Reionization July 2, 2009 Michael Mortonson U Chicago/KICP 3 The End of Reionization Fan, Carilli, & Keating (2006)

Reionization Science from the CMB After Planck Michael Mortonson U Chicago/KICP 4 Reionization peak Reionization from Large-Scale E-modes July 2, 2009 Free electrons from reionization rescatter CMB photons Local quadrupole generates polarization Scattering at low redshifts projects onto large angular scales

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 5July 2, 2009 WMAP Optical depth:  = 0.09 ± 0.02 Mortonson & Hu (2008) Allowed effects of reionization at 6<z<30

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 6July 2, 2009 Planck and CMBPol Expect improved constraints on: optical depth (time of reionization) parameters of physical reionization models general reionization histories

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 7July 2, 2009 Optical Depth WMAP   = Planck   = CMBPol   = [Fermilab report] WMAP CMBPol

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 8July 2, 2009 Optical Depth Does the optical depth come from high z or low z? [Fermilab report] WMAP Planck CMBPol

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 9July 2, 2009 Physical Models Simple model – assume that DM halos of mass M > M min host radiation sources that ionize regions of mass  M: [Fermilab report] WMAP Planck CMBPol

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 10July 2, 2009 General Reionization Histories Models of reionization may not capture all relevant physical processes How much information about the general evolution of the ionization fraction can we get from large-scale CMB polarization (regardless of what it tells us about particular models)?

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 11July 2, 2009 General Reionization Histories Models of reionization may not capture all relevant physical processes How much information about the general evolution of the ionization fraction can we get from large-scale CMB polarization (regardless of what it tells us about particular models)? CAMB/CosmoMC module for general reionization models:

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 12July 2, 2009 General Reionization Histories

Reionization Science from the CMB After Planck Usual approach: inst. reion. Michael Mortonson U Chicago/KICP 13July 2, 2009 General Reionization Histories

Reionization Science from the CMB After Planck Second parameter Michael Mortonson U Chicago/KICP 14 Reducing Reionization Confusion Stronger constraints on reionization parameters will improve constraints on parameters degenerate with reionization Example: inflationary features in CMB temperature and polarization July 2, 2009

Reionization Science from the CMB After Planck Second parameter Michael Mortonson U Chicago/KICP 15 Adams et al (2001), Covi et al. (2006) July 2, 2009 Inflationary features and reionization

Reionization Science from the CMB After Planck Second parameter Michael Mortonson U Chicago/KICP 16 Inflationary features and reionization Mortonson, Dvorkin, Peiris, & Hu (2009) July 2, 2009 Planck: 2-3  CMBPol: 5-6 

Reionization Science from the CMB After Planck Summary Michael Mortonson U Chicago/KICP 17 Summary Future polarization data will improve constraints on reionization parameters – several times more precise than WMAP. Can measure up to ~5 parameters describing the ionization history. Precise determination of physical parameters or reconstruction of the ionization history will likely require additional information. Potential confusion between effects of reionization and other large-scale polarization parameters can be greatly reduced. July 2, 2009