Shui-Ming Hu (胡水明) University of Science & Technology of China (USTC) Hefei, China June 17, 2014, ISMS-UIUC Doppler broadening thermometry based on cavity.

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
Tunable Laser Spectroscopy Referenced with Dual Frequency Combs International Symposium on Molecular Spectroscopy 2010 Fabrizio Giorgetta, Ian Coddington,
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Dual Wavelength Isotope Ratio FS-CRDS Thinh Q. Bui California Institute of Technology ISMS 2014.
The Performance of Chip-Scale Atomic Clocks V. Gerginov 1, S. Knappe 2, P.D.D. Schwindt 3, V. Shah 2, J. Kitching 3, L. Hollberg 3 In collaboration with:
Lock-in amplifiers
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Low-temperature primary thermometry development at NRC
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall University of Illinois at Urbana-Champaign.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Pressure Broadening and Spectral Overlap in the Millimeter Wave Spectrum of Ozone International Symposium on Molecular Spectroscopy 65 th Meeting — June.
Columbus, 18 June 2013 International Symposium on Molecular Spectroscopy 68 th Meeting - June 17-21, 2013, Ohio State University Determination of the Boltzmann.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Haifeng Huang and Kevin K. Lehmann
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
High-Precision Sub-Doppler Infrared Spectroscopy of HeH + Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul A. Jenkins II, and.
Fiber-laser-based NICE-OHMS
LOW TEMPERATURE LINESHAPE OF HYDROGEN DEUTERIDE TF14 BRIAN J. DROUIN, HARSHAL GUPTA, JOHN C. PEARSON, Jet Propulsion Laboratory, California Institute of.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Quantum-Noise-Limited Cavity Ring-Down Spectroscopy in the Mid-Infrared Adam J. Fleisher,* David A. Long, Qingnan Liu, and Joseph T. Hodges Material Measurement.
CO 2 Lineshapes Near 2060nm Thinh Q. Bui California Institute of Technology ISMS 2014.
Rotationally-Resolved Infrared Spectroscopy of the ν 16 Band of 1,3,5- Trioxane Bradley M. Gibson, Nicole C. Koeppen Department of Chemistry, University.
I. Ventrillard-Courtillot, Th. Desbois, T. Foldes and D. Romanini
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
Linhan Shen1, Thinh Bui1, Lance Christensen2, Mitchio Okumura1
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 [10 0 1,02 0 1] I ← Band Near 2.7 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
California Institute of Technology
Ultrasensitive, high accuracy measurements of trace gas species D. A. Long, A. J. Fleisher, J. T. Hodges, and D. F. Plusquellic ISMS 24 June 2015 Figure.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Concentration Dependence of Line Shapes in the Band of Acetylene Matthew Cich, Damien Forthomme, Greg Hall, Chris McRaven, Trevor Sears, Sylvestre.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
High Precision Spectroscopy of CH 5 + with NICE-OHVMS James N. Hodges, Adam J. Perry and Benjamin J. McCall.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
Linhan Shen1, Thinh Bui1, John Eiler2, Mitchio Okumura1
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Z. Reed,* O. Polyansky,† J. Hodges*
A THz PHOTOMIXING SYNTHESIZER BASED ON A FIBER FREQUENCY COMB DEDICATED TO HIGH RESOLUTION SPECTROSCOPY OF ATMOSPHERIC COMPOUNDS Arnaud Cuisset, Laboratoire.
Lock-in amplifiers
69th. International Symposium on Molecular Spectroscopy
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Two-Photon Absorption Spectroscopy of Rubidium
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
Precision Control Optical Pulse Train
Calculations and first quantitative laboratory measurements of O2 A-band electric quadrupole line intensities and positions 16O2 b(1) ← X (1) PQ(11) magnetic.
Low-Temperature, High-Precision Measurements of the O2 A-Band
Presentation transcript:

Shui-Ming Hu (胡水明) University of Science & Technology of China (USTC) Hefei, China June 17, 2014, ISMS-UIUC Doppler broadening thermometry based on cavity ring-down spectroscopy TJ12

Beijing Shanghai Hongkong Where is Hefei?

γDγD ν0ν0 ν Parameter cm ν0ν0 γDγD TkBkB Uncertainty0~ 10 ppb< 1 ppb?1ppm Doppler Broadening Thermometry (DBT) C. Daussy, et al., Phys. Rev. Lett. 98, (2007); C. Lemarchand et al., New J. Phys. 13, (2011). G. Casa, et al., Phys. Rev. Lett. 100, (2008); L. Moretti et al., Phys. Rev. Lett. 111, (2013)

Determination of Boltzmann Constant k B (CODATA2010) AGT: acoustic gas thermometry RIGT: refractive index gas thermometry JNT: Johnson noise thermometry INRIM: Istituto Nazionale di Ricerca Metrologica, Torino, Italy LNE: Laboratoire national de m´etrologie et d’essais,Trappes, France NIST: National Institute of Standards and Technology, USA NPL: National Physical Laboratory, Teddington, UK AGT k B = (13) E-23 J/K Rel. Uncertainty ~ 1ppm

Uncertainty budget in DBT Moretti et al, PRL 111: (2013)  SNR of spectrum, 300 ppm (single scan)  Pressure induced broadening effects, Pa  Laser line width, 1MHz Better sensitivity? Better precision?

Cavity ring-down spectroscopy (CRDS) Very high sensitivity L eff ~ 10,000 km Large dynamic range I =I 0 exp(-t/τ) Timet=0 Intensity τ0τ0 τ

Frequency drift C 2 H 2 ro-vibrational line at 12629cm -1 C 2 H 2 60 Pa

Laser-Locked CRDS Ring-down Cavity Laser Peak Lock ULE-FPI Etalon Lock etalon λ/2 PZT DAQ PD v0v0 Switch EOM v 0 -f m v 0 +f m v0v0 Microwave Pan et al, Rev. Sci. Instrum. 82:103110, 2011

Laser frequency Precision: ~10 kHz Dynamic range: ~10 GHz Absorption coefficient Sensitivity: ~ /cm Dynamic range: >10 5 Sensitivity & Precision of LL-CRDS Freq. combs Freq. Ref. Microwave scan Gao et al, Rev. Sci. Instrum. 81:043105, 2010; Cheng et al, Opt Express, 20:9956, 2012 Pan et al, Rev. Sci. Instrum. 82:103110, 2011

Sun et al, Opt Express 19: (2011)  Higher sensitivity Measurement with low sample pressures  Better precision Scan with microwave  Superior linear dynamic range

Temperature-Stabilized Ring-down Cavity T 1 - T 2 = 0.32(1) mK

AOM 1 AOM 2 MBR110 PBS Pol λ/4 Det2 Det1 Det3 BS ULE-FPI Det4 PZT Hart 5686 Heating wire ~ EOM × v0v0 v 0 -f m v 0 +f m v0v0 T controlled etalon PBS Etalon lock PZT v 0 +f m RF synthesizer GPS-disciplined Rb clock EOM

C 2 H 2 ~3.3Pa 100 s each scan SNR~10,000

Statistical uncertainty in determined line width N: number of scans

DBT Temperature from different line-profile models

USTC Dr. Cun-Feng Cheng Dr. Yu Sun Dr. An-Wen Liu Jin Wang, Yan Tan NIM Dr. JinTao Zhang Thank You for Attention! Summary  CRDS allows DBT measurement at lower pressures in near-IR;  Laser-locked CRDS allows spectral scan with high precision;  RD cell thermo-stabilized to  Statistical uncertainty <10 ppm (in line width) is feasible. To be improved  A new RD cell thermo-stabilized at K;  Laser with a line-width of 0.1kHz;  More accurate (and sophisticated) line profile model……