Doc.: IEEE 802.15-05-0257-00-004a Submission May 2005 Francois Chin (I 2 R) Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks.

Slides:



Advertisements
Similar presentations
Doc.: IEEE a July, 2006 Project: IEEE Study Group for Wireless Personal Area Networks (WPANs) Submission Title: [SFD Design] Date.
Advertisements

April 25th 2005Doc: IEEE a Zafer Sahinoglu, Mitsubishi Electric SlideTG4a1 Project: IEEE P Working Group for Wireless Personal Area.
Doc.: IEEE b Submission March 2005 Francois Chin, Institute for Infocomm Research (I 2 R) Slide 1 Project: IEEE P Working Group.
Doc.: IEEE a TG4a September 20, 2005 L. Reggiani, G.M. Maggio and P. RouzetSlide 1 Project: IEEE P Working Group for Wireless Personal.
Doc.: IEEE /270 Submission July 2003 Liang Li, Helicomm Inc.Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE Submission doc. : IEEE March 2009 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE /235r0 Submission May 2001 Philips SemiconductorsSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE r3 Submission November 2004 Michael Mc Laughlin, decaWaveSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
Doc: IEEE a 5 July 2005 Z. Sahinoglu, Mitsubishi Electric 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE a TG4a July 18th 2005 P.Orlik, A. Molisch, Z. SahinogluSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
June 19nd, 2005Doc: IEEE a I. Guvenc, Z. Sahinoglu, Mitsubishi Electric SlideTG4a1 Project: IEEE P Working Group for Wireless Personal.
Doc.: IEEE a Submission Jan 2005 Francois Chin, Institute for Infocomm Research (I 2 R) Slide 1 Project: IEEE P Working Group.
May 2005 Patricia MARTIGNE doc.: IEEE a Submission Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc: IEEE a 27 June Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Qualitative.
Doc.: IEEE a Submission June 2005 Dani Raphaeli, SandLinks Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE b Submission Jan 2005 Francois Chin, Institute for Infocomm Research (I 2 R) Slide 1 Project: IEEE P Working Group.
Doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE r0 Submission September 2004 Michael Mc Laughlin, decaWaveSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
April 25th 2005Doc: IEEE a Zafer Sahinoglu, Mitsubishi Electric SlideTG4a1 Project: IEEE P Working Group for Wireless Personal Area.
Doc.: IEEE −05−0393−00−004a Submission July, 2005 Mc Laughlin, DecawaveSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
doc.: IEEE <doc#>
Submission Title: [Recommended Ranging Signal Waveforms]
May, 2010 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Long-range mode preamble design for f.
doc.: IEEE <doc#>
doc.: IEEE <doc#>
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Ranging Signal Waveforms: Non-coherent Ranging Proposals.
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
Date Submitted: [24 June 2005]
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
1/2/2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Modulation Simulation Results] Date Submitted:
Date Submitted: [26-Oct-2005]
Submission Title: [Codes for preamble and data]
Submission Title: [FEC & Modulation Options and considerations]
Submission Title: [Robust Ranging Algorithm for UWB radio]
doc.: IEEE <doc#>
doc.: IEEE <doc#>
Submission Title: [Robust Ranging Algorithm for UWB radio]
doc.: IEEE <doc#>
Date Submitted: [26-Oct-2005]
Date Submitted: [March, 2007 ]
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
November, 2003 doc.: IEEE November 2003
Date Submitted: [18 July 2005]
doc.: IEEE <doc#>
Date Submitted: [June 2005]
doc.: IEEE <doc#>
doc.: IEEE <doc#>
doc.: IEEE <doc#>
Signal Waveform Comparisons
Submission Title: [Robust Ranging Algorithm for UWB radio]
doc.: IEEE <doc#>
Submission Title: [FEC Multipath performance for TG4a ]
5/7/2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [modulation summary for TG4a] Date Submitted:
Submission Title: [SFD comparison] Date Submitted: [18−July−2006]
Submission Title: [SFD comparison] Date Submitted: [18−July−2006]
doc.: IEEE <doc#>
Sept 2005 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Data modulation simulation results] Date.
Signal Waveform Comparisons
Submission Title: [SFD comparison] Date Submitted: [18−July−2006]
Project: IEEE Study Group for Wireless Personal Area Networks (WPANs)
Presentation transcript:

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [How Energy Detector handles Inter-Pulse Interference?] Date Submitted: [12 May 2005] Source: [Francois Chin, Lei Zhongding, Yuen-Sam Kwok, Xiaoming Peng] Company: [Institute for Infocomm Research, Singapore] Address: [21 Heng Mui Keng Terrace, Singapore ] Voice: [ ] FAX: [ ] Re: [] Abstract: [Presents signaling options to achieve precision ranging with both coherent and non- coherent receivers] Purpose: [To discuss which signal waveform would be the most feasible in terms of performance and implementation trade-offs] Notice:This document has been prepared to assist the IEEE P It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 2 ………………………… Non-inverted pulses are blue, Inverted pulses are green. Pulse Repetition Interval ~ 30ns …………… Ternary Signaling - Synchronisation with Energy Detector …………… Symbol Interval ~940ns Synchronisation / Ranging preamble = Binary Base Sequence repeated For K times…

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 3 How Energy Detector despread? BPF( ) 2 LPF / integrator ADC Sample Rate 1/T c Soft Despread Noncoherent detection of OOK RAKE combiner {1,-1} Binary Sequence Soft output Figure 1. The block diagram of energy detection receiver using soft despreader and RAKE combiner Unipolar M-Seq [ ] Bipolar M-Seq [ ] Ternary Seq [ ] After Square Law & Integration in PRI

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 4 Synchronisation with Energy Detector in AWGN Before Depreader – Unipolar M-Seq [ ] repeated 4x Despread Sequence – Bipolar M-Seq [ ]

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 5 How Energy Detector handle inter- pulse interference? d1d1 d2d2 d3d3 Ternary signaling Non-inverted pulses are blue, Inverted pulses are red. Pulse Repetition Interval ~ 30ns PRI T1T1 T2T2 T3T3 T4T4 T5T5 T6T6 T7T7 T8T8 d4d4 d5d5 d6d6 d7d7 Let ’ s zoom into the channel details PRI T1T1 T2T2 T3T3 T4T4 … … …

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 6 Energy Integration in PRI Pulse Repetition Interval TX Ternary codes PRI T1T1 T2T2 T3T3 T4T4 … … … = complex channel 500MHz Multipath RX (assume noiseless case) Received signal matrix (PRI/column) Take the 3 rd PRI as example d1d1 d2d2 d3d3 d4d4 d5d5 d6d6 d7d7

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 7 After square-law device at 3 rd PRI (some noise due to cross terms) The soft ADC value for 3 rd PRI: Apply integration over PRI = Column Sum More noise due to cross terms Each PRI contains partial energy from previous pulses Multipath energy spread each PRI Energy Integration in PRI

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 8 Energy Detector Sees An Equivalent Unipolar Sequence after integration in PRI d1d1 d2d2 d3d3 Ternary signaling Non-inverted pulses are blue, Inverted pulses are red. Pulse Repetition Interval ~ 30ns After Square Law & Integration in PRI PRI T1T1 T2T2 T3T3 T4T4 e1e1 e3e3 e2e2 + More Noise due to cross terms Sequence become Unipolar d4d4 d5d5 d6d6 d7d7 c1c1 c2c2 c3c3 c4c4 c5c5 c6c6 c7c7 c j =d j 2 integrator Output is a convolution of the equivalent Unipolar Sequence with a PRI-spaced tap-delay-line channel, each tap comprising multipath energy within a correponding PRI

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 9 In Multipath Channels … BPF( ) 2 LPF / integrator ADC Sample Rate 1/T c Soft Despread Noncoherent detection of OOK RAKE combiner {1,-1} Binary Sequence Soft output Figure 1. The block diagram of energy detection receiver using soft despreader and RAKE combiner Unipolar M-Seq [ ] Despread Sequence = Bipolar M-Seq [ ] Ternary Seq [ – ] PRI T1T1 T2T2 T3T3 T4T4 e1e1 e3e3 e2e2 T1T1 T2T2 T3T3 T4T4 e1e1 e3e3 e2e2

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 10 PRI T1T1 T2T2 T3T3 T4T4 e1e1 e3e3 e2e2 Equivalent to Synchronisation in Multipath Channels Sliding Correlator Output …. Simple RAKE combining at the despreader output (in fact, simple summation across despreader output) can be used to collect energy across PRI

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 11 Summary Square Law / Envelope Detector effectively convert a ternary sequence to a Unipolar Sequence Energy integration in PRI converts the multipath channels into a PRI-spaced tap-delay-line channel, each tap comprising multipath energy within a correponding PRI Energy collector / integrator Output is a convolution of the equivalent Unipolar Sequence with the PRI-spaced tap-delay-line channel Simple RAKE combining at the despreader output (in fact, simple summation across despreader output, no need RAKE coefficients) can be used to collect energy across PRI Energy Detector can handle inter-pulse interference just as normal direct sequence spread spectrum systems

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 12 Appendix

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 13 Ternary – Bipolar – Unipolar Conversion Seq Seq Seq Seq Seq Seq Seq Seq Seq Seq Seq Seq This is in fact m- Sequences! Ternary Bipolar Unipolar ± → + 0 → - + → + - → 0 Seq Seq Seq Seq Seq Seq

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 14 Properties of M-Sequence Transmit – Unipolar M-Seq [ ] repeated 4x Receive – Bipolar M-Seq [ ] ZERO autocorrelation

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 15 Properties of M-Sequence Transmit – Bipolar M-Seq [ ] repeated 4x Receive – Unipolar M-Seq [ ] ZERO autocorrelation

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 16 Properties of M-Sequence Transmit – Bipolar M-Seq [ ] repeated 4x Receive – Bipolar M-Seq [ ] HIGH peak LOW autocorrelation

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 17 How to make use of these properties? Transmit signaling UnipolarBipolar Receive signaling BipolarUnipolarBipolar Tx PAR2x1x Corr O/P peka Signal Amp 16 x sqrt(2)1632 Corr O/P noise Pwr 32 σ 2 16 σ 2 32 σ 2 Corr O/P SNR16 / σ 2 32 / σ 2 Despread Gain16 32 Auto-corr00Low ApplicationsEnergy Det - Ranging / Sync / Comm Coherent Det – Ranging Coherent Det - Sync / Comm

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 18 Ranging: Code Sequences for different Receiver Receiver TypeRanging Signaling Sequence Receive Sequence CoherentBinaryUnipolar Differential ChipBinaryUnipolar(Differential(Binary)) Energy DetectorTernaryBipolar Criteria/Target – ZERO autocorrelation sidelobes

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 19 Communication: Code Sequences for different Receiver Transmit SignalingReceiver TypeReceive Sequence Ternary (Mode 1) CoherentTernary Differential ChipDifferential(Ternary) Energy DetectorBipolar Binary (Mode 2) CoherentBipolar Differential ChipDifferential(Bipolar) Energy DetectorN.A. Criteria/Target – Max SNR and min inter-sequence interference after despreading

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 20 Snychronisation: Code Sequences for different Receiver Transmit SignalingReceiver TypeReceive Sequence Ternary (Mode 1) CoherentTernary Differential ChipDifferential(Ternary) Energy DetectorBipolar Binary (Mode 2) CoherentBipolar Differential ChipDifferential(Bipolar) Energy DetectorN.A. Criteria/Target – balance max post-despreading SNR and low auto-correlation sidelobes

doc.: IEEE a Submission May 2005 Francois Chin (I 2 R) Slide 21 Synchronisation Preamble M-sequences has excellent autocorrelation properties Synchronisation / Ranging Preamble is constructed by repeating the base sequence Ternary for Common Signaling e.g. Beacon Packet Ternary for Energy Detector Bipolar for Coherent and Differential Chip Detectors Long preamble for distant nodes is constructed by further symbol repetition