INTRACAVITY LASER SPECTRA OF METHANE 790 AND 861 nm BANDS AT LOW TEMPERATURES SADASIVAN SHAJI and JAMES J O’BRIEN Department of Chemistry & Biochemistry.

Slides:



Advertisements
Similar presentations
1 Analysis of BBCRDS Spectra: Inferred Upper Limits for Water Dimer Absorption A.J.L. Shillings 1, S.M. Ball 2 and R.L. Jones 1 1 University of Cambridge,
Advertisements

BBCRDS Measurements of Water Vapour: Inferred Upper Limits for Water Dimer Absorption in the 610 and 750 nm regions A.J.L. Shillings 1, S.M. Ball 2 and.
Laboratory Measurement of CO 2 ( 2 ) + O Temperature-Dependent Vibrational Energy Transfer Karen J. Castle, 1 Michael Simione, 1 Eunsook S. Hwang, 2 and.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Spectroscopy of CuN in the Near Infrared by Intracavity Laser Absorption Spectroscopy Leah C. O'Brien and Kaitlin A. Womack, Department of Chemistry, Southern.
Intracavity Laser Absorption Spectroscopy of PtS in the Near Infrared James J. O'Brien University of Missouri – St. Louis and Leah C. O'Brien and Kimberly.
MULTIPLEXED CHIRPED PULSE QUANTUM CASCADE LASER MEASUREMENTS OF AMMONIA AND OTHER SMALL MOLECULES Craig Picken, David Wilson, Nigel Langford and Geoffrey.
Update on the Leicester lab studies (WP2.2 cavity ringdown spectroscopy) Stephen Ball & Simon Neil (Leicester University) CAVIAR science meeting, NPL,
The 4  3 Spectral Region of Methane D. Chris Benner, V. Malathy Devi Department of Physics, College of William and Mary, Williamsburg, VA J.
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
1 University of Petra Faculty of Science & Arts Department of Chemistry Seminar I.R Spectroscopy By Firas Al-ouzeh Supervisor : Nuha I. Swidan Summer 2007.
HIGH-RESOLUTION ABSORPTION CROSS SECTIONS OF C 2 H 6 AND C 3 H 8 AT LOW TEMPERATURES ROBERT J. HARGREAVES DANIEL J. FROHMAN
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Explore. Discover. Understand. AIR-BROADENED LINE WIDTHS AND SHIFTS IN THE ν 3 BAND OF 16 O 3 AT TEMPERATURES BETWEEN 160 AND 300 K M. A. H. SMITH and.
Development of a Near-IR Cavity Enhanced Absorption Spectrometer for the detection of atmospheric oxidation products and amines Nathan C. Eddingsaas Breanna.
Infrared Interferometers and Microwave Radiometers Dr. David D. Turner Space Science and Engineering Center University of Wisconsin - Madison
Brookhaven Science Associates U.S. Department of Energy Hot band transitions in CH 2 Kaori Kobayashi *, Trevor Sears, Greg Hall Department of Chemistry.
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
Zhong Wang, Trevor Sears Department of Chemistry, Brookhaven National Laboratory; Department of Chemistry, Stony Brook University Ju Xin Department of.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Physics of the Atmosphere II
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Comparison of Experimental and Theoretical Cross-sections of PFBAm By: Paul J. Godin, Stephanie Conway, Angela Hong, Karine Le Bris, Scott Mabury, and.
Haifeng Huang and Kevin K. Lehmann
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Valerie Klavans University of Maryland Conor Nixon University of Maryland, NASA GSFC Tilak Hewagama University of Maryland, NASA GSFC Donald E. Jennings.
Quantification of Chromatic Aberration In the Laser-Heated Diamond Anvil Cell Emily England, Wes Clary, Daniel Reaman, Wendy Panero School of Earth Sciences,
1 Intracavity Laser Absorption Spectroscopy of Nickel Fluoride in the Near-Infrared James J. O'Brien Department of Chemistry & Biochemistry University.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
A NEW 2 Σ Σ + TRANSITION OF PtF BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY LEAH C O'BRIEN, TAYLOR DAHMS, KAITLIN A WOMACK Department of Chemistry,
LOW TEMPERATURE LINESHAPE OF HYDROGEN DEUTERIDE TF14 BRIAN J. DROUIN, HARSHAL GUPTA, JOHN C. PEARSON, Jet Propulsion Laboratory, California Institute of.
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
IGRINS Science Workshop High Spectral Resolution Mid- Infrared Spectroscopy as a Probe of the Physical State of Planetary Atmospheres August 26,
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
LINE BY LINE SPECTRAL PARAMETERS IN THE 4nu3 SPECTRAL REGION OF METHANE D. CHRIS BENNER, V. MALATHY DEVI, College of William and Mary J. J. O’BRIEN, S.
H 2 AND N 2 -BROADENED C 2 H 6 AND C 3 H 8 ABSORPTION CROSS SECTIONS ROBERT J. HARGREAVES a DOMINIQUE APPADOO b BRANT E. BILLINGHURST.
Clouds in the Tropics of Titan Emily Schaller Lunar and Planetary Laboratory, University of Arizona 2010 Hubble Fellows Symposium.
Linhan Shen1, Thinh Bui1, Lance Christensen2, Mitchio Okumura1
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
Improved Experimental Line Positions for the (1,1) Band of the b 1 Σ + g - X 3 Σ - g Transition of O 2 by Intracavity Laser Absorption Spectroscopy Leah.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
SELF- AND CO 2 -BROADENED LINE SHAPE PARAMETERS FOR THE 2 AND 3 BANDS OF HDO V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, College of William.
The Influence of Free-Running FP- QCL Frequency Jitter on Cavity Ringdown Spectroscopy of C 60 Brian E. Brumfield* Jacob T. Stewart* Matt D. Escarra**
D. Mondelain, A. Campargue, S. Kassi Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS The water vapor self-continuum in the 1.6 µm.
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
Rotational and Hyperfine Analyses of the Band of 17 O- Containing Isotopologues of Oxygen Measured by CRDS at Room and Liquid Nitrogen Temperatures Olga.
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. The absorption spectra of oxy- and deoxyhemoglobin relative to emission spectra.
Kinetics measurements of HO 2 and RO 2 self and cross reactions using infrared kinetic spectroscopy (IRKS) A.C. Noell, L. S. Alconcel, D.J. Robichaud,
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Jack C. Harms, Ethan M. Grames, Leah C. O’Brien,*
Jet Propulsion Laboratory, Pasadena, CA
Linhan Shen1, Thinh Bui1, John Eiler2, Mitchio Okumura1
INFRARED CROSS SECTIONS OF HOT HYDROCARBONS
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
Infrared absorption cross sections of cold propane in the low frequency region between 600 – 1300 cm-1. Wong, A.a, Hargreaves, R.J.b, Billinghurst, B.E.c,
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
Cavity ring down absorption of oxygen in air as a temperature sensor
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Helena Diez-y-Riega and Carlos E. Manzanares
ABSORPTION SPECTRA FOR THE 889 nm BAND OF METHANE DERIVED FROM INTRACAVITY LASER SPECTROSCOPY MEASUREMENTS MADE AS A FUNCTION OF LOW SAMPLE TEMPERATURES.
Leah C. O'Brien and Kaitlin Womack Department of Chemistry
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
Incoherent broadband cavity-enhanced absorption spectroscopy for simultaneous measurements of HONO and NO2 Min.Qin, Jun.Duan, Renzhi Hu, Wu.Fang, Xue.Lu,
Presentation transcript:

INTRACAVITY LASER SPECTRA OF METHANE 790 AND 861 nm BANDS AT LOW TEMPERATURES SADASIVAN SHAJI and JAMES J O’BRIEN Department of Chemistry & Biochemistry and Center for Nanoscience, University of Missouri, St. Louis, MO

Methane is an important component in the atmospheres of giant planets and their major satellites Laboratory spectral data at low temperatures are required to interpret the planetary data properly Methane spectrum in near-IR region is intrinsically very weak and hence a very sensitive method like intracavity laser spectroscopy (ILS) is needed Absorption lines appear superimposed on the output of the laser which is operated in a time-modulated fashion ILS enhances the sensitivity with its tremendous 'effective pathlength' > 100 km being achieved easily ILS is both ultrasensitive and quantitative method for acquiring weak absorption spectra Introduction "The lakes of Titan" Nature, vol.445, p 61, 2007

Schematic diagram for the intracavity laser spectrometer FM=fold mirror; HR=high reflector; OC=output coupler; AOM=acousto-optic modulator

Schematic of the four walled Cryogenic chamber

Pressure and temperatures of the sample cell for the effective temperature 161 K (-112 ° C) when the set-point temperature is 148 K (-125 °C)

Pressure and temperatures of the sample cell for the effective temperature 131 K (-142 ° C) when the set-point temperature is 108 K (-165 °C)

Pressure and temperatures of the sample cell for the effective temperature 99 K (-174 ° C) when the set- point temperature is 77 K (-196 °C)

Plots indicating the linearity of the ILS results as a function of (a) path length (methane pressure is 8.1 torr) and (b) pressure for a section of the methane (generation time 40 microsec) around cm -1 at 99 K (a) (b)

Plots indicating the linearity of the ILS results as a function of (a) path length (methane pressure is 8.3 torr) and (b) pressure for a section of the methane (generation time 30 microsec) around cm -1 at 131 K (a)(b)

Plots indicating the linearity of the ILS results as a function of (a) path length (methane pressure is 7.3 torr) and (b) pressure for a section of the methane (generation time 30 microsec) around cm -1 at 161 K (a)(b)

A section of the methane 790 nm band around cm -1 at 99K, 131 K and 161 K

A section of the methane 790 nm band around cm -1 normalized to a sample pressure of 4 torr and 4 km pathlength at 99 K, 131 K and 161 K

A section of 99 K Methane spectrum in the 790 nm band showing the original and deconvolved data. The spectrum is normalized to methane conditions of 4 torr and 4 km

Methane absorption coefficients for the 790 nm band averaged per Å derived from ILS spectra of methane at 161 K, 131 K and 99 K.

Methane absorption coefficients for the 790 nm band averaged per cm -1 derived from ILS spectra of methane at 161 K, 131 K and 99 K.

Methane absorption coefficients for the 790 nm band averaged per nm interval derived from ILS spectra of methane at 161 K, 131 K and 99 K.

A section of the methane 861 nm band around cm -1 normalized to a sample pressure of 4 torr and 4 km pathlength at 99 K, 131 K and 161 K

Methane absorption coefficients for the 861 nm band averaged per Å derived from ILS spectra of methane at 161 K, 131 K and 99 K.

Methane absorption coefficients for the 861 nm band averaged per cm -1 derived from ILS spectra of methane at 161 K, 131 K and 99 K.

Methane absorption coefficients for the 861 nm band averaged per nm interval derived from ILS spectra of methane at 161 K, 131 K and 99 K.

Methane 790 and 861 nm band strengths (cm -1 km -1 am -1 ) a comparison 790 nm band861 nm band Karkoschka & Tomasco (R.T) Karkoschka & Tomasco cold temperature (  K, Saturn’s upper troposphere) Ramaprasad et al. (liquid phase) 450 ± ±-300 Ramaprasad et al (calculated gas phase methane) Giver (R T)469±14871 ± 45 ILS (R.T) ILS (77K)638 ILS (161 K) ILS (131 K) ILS (99K) James J O’Brien and Hong Cao, JQSRT 75 (2002)

A four-walled cryogenic chamber for low temperature ILS studies is used to collect the methane spectra The effective temperature in the chamber is in good agreement with that calculated from the gas laws. Linearity of the ILS results as a function of pathlength and pressure are verified at three low temperatures. Methane spectra recorded for 790 and 861 nm bands at different low sample temperatures. Absorption coefficients for the 790 and 861 nm bands at three low temperatures are determined. Conclusions

Acknowledgements Support from NASA’s Planetary Atmospheres Program (NAG ) is gratefully acknowledged. Additional supplemental funding from National Science Foundation (CHE ) and University of Missouri Research Board for the Verdi laser is gratefully acknowledged. Thank you

Å 161 K131 K99 K 7551,56 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , nm band

7603,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , ,

7659,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,5 0, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , ,

7713,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , ,

7769,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 1, , , ,5 0, , , ,50, , , ,50, , , ,50, , , ,50, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,50, , , ,51, , , ,51, , , ,51, , , ,50, , , ,51, , , ,50, , , ,50, , , ,51, , , ,50, , , ,51, , , ,50, , , ,50, , ,

7826,5 1, , , ,5 0, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 2, , , ,5 1, , , ,5 1, , , ,5 2, , , ,5 1, , , ,5 2, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 0, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 0, , , ,5 1, , , ,5 0, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 0, , , ,51, , , ,50, , , ,50, , , ,51, , , ,51, , , ,50, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,50, , , ,50, , , ,51, , , ,51, , , ,51, , , ,50, , , ,50, , , ,50, , , ,51, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , ,

7886,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,50, , , ,51, , , ,50, , , ,50, , , ,50, , , ,51, , , ,50, , , ,51, , , ,51, , , ,50, , , ,50, , , ,51, , , ,51, , , ,50, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,50, , , ,51, , , ,50, , , ,51, , , ,51, , , ,50, , , ,51, , , ,51, , ,

7942,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 0, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,52, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,52, , , ,51, , , ,51, , ,

7997,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 2, , , ,5 2, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 0, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,5 1, , , ,50, , , ,51, , , ,51, , , ,51, , , ,50, , , ,51, , , ,51, , , ,51, , , ,51, , , ,50, , , ,51, , , ,50, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,51, , , ,50, , , ,50, , , ,50, , , ,5 0, , ,

8052,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , , ,50, , ,

8108,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,5 0, , , ,2 0, , ,

Å161 K131 K99 K nm band