Stereo March 8, 2007 Suggested Reading: Horn Chapter 13.

Slides:



Advertisements
Similar presentations
Scene Reconstruction from Two Projections Eight Points Algorithm Speaker: Junwen WU Course:CSE291 Learning and Vision Seminar Date: 11/13/2001.
Advertisements

Epipolar Geometry.
Lecture 11: Two-view geometry
Two-View Geometry CS Sastry and Yang
Jan-Michael Frahm, Enrique Dunn Spring 2012
Two-view geometry.
Lecture 8: Stereo.
Camera calibration and epipolar geometry
Structure from motion.
Stanford CS223B Computer Vision, Winter 2005 Lecture 5: Stereo I Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik Dahlkamp and Dan Morris, Stanford.
Geometry of Images Pinhole camera, projection A taste of projective geometry Two view geometry:  Homography  Epipolar geometry, the essential matrix.
Stanford CS223B Computer Vision, Winter 2006 Lecture 5 Stereo I
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Structure from motion. Multiple-view geometry questions Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding.
Uncalibrated Geometry & Stratification Sastry and Yang
Lecture 21: Multiple-view geometry and structure from motion
Previously Two view geometry: epipolar geometry Stereo vision: 3D reconstruction epipolar lines Baseline O O’ epipolar plane.
Lecture 20: Two-view geometry CS6670: Computer Vision Noah Snavely.
3D Computer Vision and Video Computing 3D Vision Lecture 15 Stereo Vision (II) CSC 59866CD Fall 2004 Zhigang Zhu, NAC 8/203A
3D Computer Vision and Video Computing 3D Vision Lecture 14 Stereo Vision (I) CSC 59866CD Fall 2004 Zhigang Zhu, NAC 8/203A
© 2004 by Davi GeigerComputer Vision March 2004 L1.1 Binocular Stereo Left Image Right Image.
May 2004Stereo1 Introduction to Computer Vision CS / ECE 181B Tuesday, May 11, 2004  Multiple view geometry and stereo  Handout #6 available (check with.
Lec 21: Fundamental Matrix
Camera parameters Extrinisic parameters define location and orientation of camera reference frame with respect to world frame Intrinsic parameters define.
Stereo Sebastian Thrun, Gary Bradski, Daniel Russakoff Stanford CS223B Computer Vision (with slides by James Rehg and.
Multiple View Geometry. THE GEOMETRY OF MULTIPLE VIEWS Reading: Chapter 10. Epipolar Geometry The Essential Matrix The Fundamental Matrix The Trifocal.
Structure Computation. How to compute the position of a point in 3- space given its image in two views and the camera matrices of those two views Use.
CS 558 C OMPUTER V ISION Lecture IX: Dimensionality Reduction.
3-D Scene u u’u’ Study the mathematical relations between corresponding image points. “Corresponding” means originated from the same 3D point. Objective.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Review April 24.
CSE 6367 Computer Vision Stereo Reconstruction Camera Coordinate Transformations “Everything should be made as simple as possible, but not simpler.” Albert.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
Automatic Camera Calibration
Computer vision: models, learning and inference
Lecture 11 Stereo Reconstruction I Lecture 11 Stereo Reconstruction I Mata kuliah: T Computer Vision Tahun: 2010.
Multi-view geometry.
Epipolar geometry The fundamental matrix and the tensor
1 Preview At least two views are required to access the depth of a scene point and in turn to reconstruct scene structure Multiple views can be obtained.
Lecture 04 22/11/2011 Shai Avidan הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Multiview Geometry and Stereopsis. Inputs: two images of a scene (taken from 2 viewpoints). Output: Depth map. Inputs: multiple images of a scene. Output:
Stereo Course web page: vision.cis.udel.edu/~cv April 11, 2003  Lecture 21.
1 Formation et Analyse d’Images Session 7 Daniela Hall 25 November 2004.
Announcements Project 3 due Thursday by 11:59pm Demos on Friday; signup on CMS Prelim to be distributed in class Friday, due Wednesday by the beginning.
Multi-linear Systems and Invariant Theory in the Context of Computer Vision and Graphics CS329 Amnon Shashua.
Bahadir K. Gunturk1 Phase Correlation Bahadir K. Gunturk2 Phase Correlation Take cross correlation Take inverse Fourier transform  Location of the impulse.
Two-view geometry. Epipolar Plane – plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections of the.
stereo Outline : Remind class of 3d geometry Introduction
Feature Matching. Feature Space Outlier Rejection.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
MASKS © 2004 Invitation to 3D vision Uncalibrated Camera Chapter 6 Reconstruction from Two Uncalibrated Views Modified by L A Rønningen Oct 2008.
Camera Model Calibration
Reconstruction from Two Calibrated Views Two-View Geometry
Geometry Reconstruction March 22, Fundamental Matrix An important problem: Determine the epipolar geometry. That is, the correspondence between.
Lec 26: Fundamental Matrix CS4670 / 5670: Computer Vision Kavita Bala.
Multiview geometry ECE 847: Digital Image Processing Stan Birchfield Clemson University.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
Undergrad HTAs / TAs Help me make the course better!
CS4670 / 5670: Computer Vision Kavita Bala Lec 27: Stereo.
René Vidal and Xiaodong Fan Center for Imaging Science
Two-view geometry Computer Vision Spring 2018, Lecture 10
Epipolar geometry.
Epipolar geometry continued
George Mason University
Reconstruction.
Two-view geometry.
Two-view geometry.
Multi-view geometry.
Presentation transcript:

Stereo March 8, 2007 Suggested Reading: Horn Chapter 13

Stereo Vision Stereo vision: ability to infer information on the 3-D structure and distance of a scene from two (or more images) taken from different view points. Two main problems: 1.Find Correspondences 2.Reconstruction (geometry)

Simple Stereo System Coordinates origin at the midpoint of the two camera centers.

Simple Stereo System

Disparity

Stereo Imaging

Range vs. Disparity

Stereo Calibaration

More Practical Stereo Model

Epipolar Geometry p OLOL OROR Epipoles Epipolar line O R =O L +T P r = R(P l -T) P r : P in the right camera’s frame P l : P in the left camera’s frame

Essential Matrix An important problem: Determine the epipolar geometry. That is, the correspondence between a point on one camera and its epipolar line on the other camera. The rigid transformation not important p OLOL OROR Epipoles Epipolar line T

Essential Matrix S has rank two. Dividing by Z r, Z l, Essential matrix E is the mapping between points and epipolar lines!

Fundamental Matrix Essential matrix uses camera frames. We need matrix that works directly with pixel frames. F: rank 2 and has eight degree of freedom.

Eight Point Algorithm To determine F, we need eight corresponding pairs. Each pair of corresponding points give a linear equation (with variable the entries of F).

Eight Point Algorithm Let A be the resulting linear system. Find F as the unit vector that minimizes | A F |. 1.SVD of A = USV. F will be the last row of V (if the diagonal entries of S is in descending order). 2.Recall that F has rank two. SVD of F = USV. Let F = US’V where S’ is obtained from S by replacing the smallest singular value of F with 0.

Locating Epipole p OLOL OROR Epipoles Epipolar line T Where is the epipole? Epipole is the null vector of F F has rank two. This means that it has one dimensional null space.