T.Takahashi Hiroshima Photon Collider testbed at ATF2 ~a possible plan~ T.Takahashi Hiroshima Univ. May 31 2006 ATF2 meeting.

Slides:



Advertisements
Similar presentations
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Advertisements

/18 Yasuaki Ushio Hiroshima University The result of cavity compton experiment.
~1m undulator IP Pol. e + source based on Compton scattering with FEL & 4 mirror cavity Low energy electron beam Gamma-ray FEL photon beam LCWS2014 in.
A_RD_01 Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay French Labs. :
Compton Experiment at the ATF Update since TILC09 Positron Workshop Durham 28-October-2009 Junji Urakawa instead of T.Takahashi KEK for collaborators.
Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay Japanese Labs. : KEK, ATF.
Status of g ray generation at KEK-ATF ► Introduction ► Status of the cavity R&D ► Out Look French Labs. : LAL (Orsay) in Collaboration with CELIA (Laser.
SLC  Testbed Proposal Jeff Gronberg  working group SC Linear Collider Retreat June 26 – 29, 2002.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
Beam loading compensation 300Hz positron generation (Hardware Upgrade ??? Due to present Budget problem) LCWS2013 at Tokyo Uni., Nov KEK, Junji.
Status of g ray generation at KEK-ATF ► Introduction ► Status of the cavity R&D ► Out Look French Labs. : LAL (Orsay) in Collaboration with CELIA (Laser.
SAPPHiRE workshop, CERN 19 th Feb 2013 A SAPPHiRE Laser? Laura Corner Lasers for Accelerators group (L4A) John Adams Institute for Accelerator Science,
Photon Collider at CLIC Valery Telnov Budker INP, Novosibirsk LCWS 2001, Granada, Spain, September 25-30,2011.
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
Status of R&D of Optical Cvities at KEK-ATF ►Introduction ►Status of the cavity R&D ►Out Look KEK, Hiroshima University LAL (Orsay) in Collaboration withCELIA.
Fabry-Perot cavity for the Compton polarimeter Goal:  5MHz repetition rate & small diameter ≈ 50  m (c.f. P. Schuler’s talks)
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Feedback R&D for Optical Cavity Ryuta TANAKA (Hiroshima univ.) 19 th Feb 2013 SAPPHiRE DAY.
T.Takahashi Hiroshima γγ state of the art and research plan, what system tests can be done at ATF2, ESA T.Takahashi Hiroshima Univ. March GDE BDS/ACFA.
Status of the optical cavity R&D at ATF IWLC2010 Geneva 20-October-2010 T.Takahashi Hiroshima University for collaborators.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
T.Takahashi Hiroshima Photon Collider testbed and other possibilities at future ATF2 T.Takahashi Hiroshima Univ. Dec ATF2 meeting.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
Status and Plan of Compton  -ray Generation at KEK-ATF Japanese Labs. : KEK, ATF group, Hiroshima University Tsunehiko OMORI (KEK) for 13 February 2014.
1 FJPPL optical cavity Compton collaboration Optical Stacking Cavity for ILC Compton e + source 15/May/2008 Junji Urakawa (KEK)
Compton Experiment at ATF LCWS10 28-March-2010 T. Takahashi (Hiroshima) / T. Omori (KEK) for collaborators.
Study of High Intensity Multi-Bunch  -ray Generation by Compton Scattering ATF TB 28/May/2006 presented by Tsunehiko OMORI (KEK) on behalf.
Ideas for e+ source and e+ polarization 29-May-2013 ECFA LC Workshop at DESY T. Omori.
Compton Experiment at ATF Tohru Takahashi Hiroshima University for Collaborators (particularly Omori san for slides)
Summary of Gamma-Gamma session Tohru Takahashi Hiroshima University Mar LCWS10/ILC10.
Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)
Laser Based Polarized e + e + Source for ILC 8th ACFA Daegu 11-14/Jul/2005 Tsunehiko OMORI (KEK)
T.Takahashi Hiroshima Optical Cavity R&D for Photon Colliders T.Takahashi Hiroshima Univ. 26 May 2008 NanoBeam 2008.
T.Takahashi Hiroshima Optical Cavity R&D around KEK-ATF T.Takahashi Hiroshima Univ. Nov LCWS08 at Chicago.
Compton Experiment at ATF Compton Meeting at LAL Orsey 2-Dec-2008 Tsunehiko OMORI (KEK) with many thanks to Compton collaborators.
Laser system for ILC diagnostics Sudhir Dixit: The John Adams Institute (Oxford)
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
1 Fast kicker study Machine Time 2011/10/18~10/29(2 weeks) TB meeting 2011/01/14 T.Naito.
Status of the Compton Experiment at the ATF TILC09 18-April-2009 T.Takahashi Hiroshima University for collaborators.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
Valery Telnov Budker INP, Novosibirsk IWLC2010, CERN October 21, 2010 A FEL pumped solid state laser system for the photon collider at CLIC.
Compton Experiment at ATF DR 2009 Summary and Plan ATF2 Project Meeting 15-Dec-2009 T. Omori (KEK) for collaborators.
CLIC polarized e+ source based on laser Compton scattering Frank Zimmermann CLIC Meeting, 16. December 2005 Thanks to Eugene Bulyak, Masao Kuriki, Klaus.
T.Takahashi Hiroshima /11/5 Tohru Takahashi Hiroshima University 高橋 徹 広島大学.
E + Polarized e + generation at KEK-ATF Tsunehiko OMORI (KEK) POSIPOL 27/Apr/2006.
50 mJ / pulse, waist = 10  m, 178.5MHz laser beam e- beam 0.11 mJ / pulse, waist = 30  m, 357MHz Where we are with lasers performance for polarized e.
Compton for ILC LCWS2012, UT at Arlington, USA T. Omori (KEK)
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
Laser source for PLC Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Laser Request for PLC 2.Technical solutions  Non linear.
Laser electron beam x 30 Multi-Compton chamber system γ-ray cm Conceptual design in 2005 Snowmass X 5 at present Big progress During R&D.
Compton Gamma-ray Generation Experiment by Using an Optical Cavity in ATF POSIPOL 2007 Workshop at LAL Hirotaka Shimizu Hiroshima University.
Update of R&D Optical Cvities at KEK-ATF ►Introduction ►Status of the cavity R&D ►Recent activities ►Out Look KEK, Hiroshima University LAL (Orsay) in.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
Status of Hiroshima-KEK Compton Experiment at ATF ► Introduction ► Status of the cavity R&D – for Two mirror cavity – for four mirror cavity KEK – Hiroshima.
Laser electron beam x 30 Multi-Compton chamber system γ-ray cm Conceptual design in 2005 Snowmass X 5 at present Good progress During R&D From Conventional.
Compton based Polarized Positrons Source for ILC V. Yakimenko 1, D. Cline 2, Ya. Fukui 2, V. Litvinenko 1, I. Pogorelsky 1, S. Roychowdhury 3 1 BNL, 2.
Interaction Region of gamma gamma colliders
Conveners: L.Serafini,F. Villa
Pol. positron generation scheme for ILC
Compton effect and ThomX What possible future?
Summary for the Sources working group
Development of Optical Resonant Cavities for laser-Compton Scattering
Multi banch generation Experiment at ATF
Summary of Gamma-Gamma session
R&D of Freedback-Free Optical Resonant Cavity
N. Terunuma (KEK) ILC2010, Beijing, March 29th, /2/28.
Polarized Positrons in JLEIC
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Presentation transcript:

T.Takahashi Hiroshima Photon Collider testbed at ATF2 ~a possible plan~ T.Takahashi Hiroshima Univ. May ATF2 meeting

T.Takahashi Hiroshima Lasers for Photon Colliders have to meet –5J/pulse –337ns separaton 3000bunches/train –5Hz simple estimate of cost for the laser –to pump 5J ×3000 pulses in 1ms $5/w

T.Takahashi Hiroshima current idea Gronberg

Nanobeams 2005 – Kyoto – October 17-21, 2005J. Gronberg - LLNL The MERCURY laser already has more average power than we need Goal: 100 J 10 Hz 10% Efficiency 2-10 ns < 5X Diffraction limit > 10 8 shots Output Diode arrays 8 diode arrays 6624 diodes total 730 kW peak power Front-end 300 mJ Gas-cooled amplifier heads Helium gas flow at 0.1 Mach Cavity Laser: 764 W average power 119 kW peak power Gronberg requirement for Cavity

T.Takahashi Hiroshima Pulse Stacking Cavity K. Moeing need extensive R&D power enhancement focus down to 5 mm w/ 100 long ring cavity is challenging

T.Takahashi Hiroshima tolerance is very small R have to be exactly L/2 resonator is stable here Omori

T.Takahashi Hiroshima Step by step plan 1.Cavities for Compton based pol. e+ projects –Fabry-Perot type spherical mirrorFabry-Perot type spherical mirror –Fabry-Perot type off-axis parabolic mirrorFabry-Perot type off-axis parabolic mirror 2.Extension of pol. e+ cavity –×10 scale of Pol e+ –ring cavity for 154ns spacing 3.Cavity w/ high power laser at ATF2-IP –not possible at ATF-DR as high power laser is destructive target 4.100m size will be tested w/o e- beam 42cm 4.62m (1/10 of bunch spacing) ATF-DR w/ low power lasers

posipol1 Plan: Exprmntl R/D at ATF. Make a fist prototype single cavity Put it in ATF ring Hiroshima-LAL-IPN-CERN-Kyoto-Waseda-KEK L cav = 420 mm Omor i

posipol2 Laser Pulse Stacking Cavity Input laser (YAGlaser) Energy 0.75 mJ / bunch nsec bunch spacing train length = 50  sec Cavity Enhancement Factor =1000 Laser pulse in cavity 750 mJ/bunch single bunch in a cavity Fabry-perot Resonator Omori

T.Takahashi Hiroshima Ring cavity at ATF-DR -after we learn a lot from PosiPol cavities- 1m 50mr circumference 4.62m (15.4ns) ー >64.9MHz For 154ns spacing: 1/10 scale (15.4ns) Lasers 10W mode locked,,,154nJ/pulse ->15.4  J/pulse w/ 100 pulse stacking 2400  /xing very similar to PosiPol experiment A laser pulse hits once in 10 turns

T.Takahashi Hiroshima Ring cavity+High power at ATF2-IP 1m 50mr 64.9MHz ×50mJ=3.245kW Cavity can be the same as ATF- DR but the laser is not Average power = 50mJ×20×repetition = as low as 1W (or less) we want 50mJ/pulse for the laser (5J/pulse in cavity) Continuous pumping (64.9MHz)of the cavity is not wise: just for 20 bunches (for a train) Peak laser pumping power = need mini-Mercury amplifier?

T.Takahashi Hiroshima Possible Plan at ATF2-IP 50mr 1m same  det. w/ Shintake mon. Shintake Mon. mode locked laser 10W 64.9MHz Out side beam line mini-Mercury for 50mJ 20bunches Modification of Mercury to multi-shot system planned at LLNL

T.Takahashi Hiroshima IP Area Concrete 1m or 2m Concrete 1m or 2m Concrete 1m Cables/ Water 1.5 m2.0 m Power Supplies ? 2.0m is preferable

T.Takahashi Hiroshima ATF2-Layout Lasers

T.Takahashi Hiroshima Summary Starting after pol e- experiment at ATF-DR –×10 scale cavity,,, O(\20M?) –same level laser,,, ~\20M ATF2-IP –same cavity –same laser –install mini-Mercury O($M? , M?) 2008 ~2009? ?