HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

TAU Update MPI Munich meeting 17/10/2006 Luminosity Detector R&D Tel Aviv University Halina Abramowicz, Ronen Ingbir, Sergey Kananov, Aharon Levy, Iftach.
March, 11, 2006 LCWS06, Bangalore, India Very Forward Calorimeters readout and machine interface Wojciech Wierba Institute of Nuclear Physics Polish Academy.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Angular resolution of LAT Agnieszka Kowal University of Science and Technology, Cracow TESLA Workshop on Forward Calorimetry Cracow, 10 October 2003.
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
L. Suszycki, Tel Aviv, Sept, 2005 LumiCal background studies Contents: Guinea Pig results Vermasseren results Remarks on energy reconstruction Conclusions.
Experimental Aspects of Precision Luminosity Measurement contributions from Forward Calorimetry Collaboration L.Suszycki AGH University of Science and.
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Effect of the Shape of the Beampipe on the Luminosity Measurement September 2008 Iftach Sadeh Tel Aviv University DESY.
Angular resolution study of isolated gamma with GLD detector simulation 2007/Feb/ ACFA ILC Workshop M1 ICEPP, Tokyo Hitoshi HANO collaborated with Acfa-Sim-J.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
ESFA/DESY LC Workshop 1 Klaus Mönig and Jadranka Sekaric Klaus Mönig and Jadranka Sekaric DESY - Zeuthen MEASUREMENT OF TGC IN e  COLLISIONS AT TESLA.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Krakow Feb.06 Institute of Physics, Prague Petr Mikes / Lukas Masek.
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Simulation of physics background for luminosity calorimeter M.Pandurović I. Božović-Jelisavčić “Vinča“ Institute of Nuclear Sciences, Belgrade, SCG.
Tungsten as HCal-material for a LC at multi-TeV energies CALICE AHCAL Meeting, DESY 17 July 2009 Christian Grefe for the Linear Collider Detector Group.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Ivan Smiljanić Vinča Institute of Nuclear Sciences, Belgrade, Serbia Energy resolution and scale requirements for luminosity measurement.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
Anders Kirleis Stony Brook University The Design Of A Detector For The Electron Ion Collider.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
Optimization of the Design of the Forward Calorimeters ECFA LC Workshop Montpellier, 15 November 2003 *FC Collaboration: Colorado, Cracow, DESY(Zeuthen),
Calorimeter in front of MUCh Mikhail Prokudin. Overview ► Geometry and acceptance ► Reconstruction procedure  Cluster finder algorithms  Preliminary.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
A Clustering Algorithm for LumiCal Halina Abramowicz, Ronen Ingbir, Sergey Kananov, Aharon Levy, Iftach Sadeh Tel Aviv University DESY Collaboration High.
A Luminosity Detector for the Future Linear Collider Ronen Ingbir Prague Workshop HEP Tel Aviv University.
Silicon sensors for LumiCal Two possible options Wojciech Wierba Institute of Nuclear Physics PAN Cracow.
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
Pad design present understanding Tel Aviv University HEP Experimental Group Ronen Ingbir Collaboration High precision design Tel-Aviv Sep.05 1.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
BESIII EMC Simulation & Reconstruction He Miao
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Tungsten-Silicon Luminosity Detector with Flat Geometry Ronen Ingbir Tel Aviv University High Energy Physics Experimental Group.
Correction methods for counting losses induced by the beam-beam effects in luminosity measurement at ILC Ivan Smiljanić, Strahinja Lukić, Ivanka Božović.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
HEP Tel Aviv University Lumical R&D progress report Ronen Ingbir ECFA - Durham2004 Lumical - A Future Linear Collider detector.
FCAL Workshop Munich -17 October 2006FCAL Workshop Munchen -17 October 2006 Four-fermion processes as a background in the luminosity calorimeter M.Pandurović.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
1 Angular resolution study of isolated gamma with GLD detector simulation 2007/Feb/5 ACFA ILC Workshop M1 ICEPP, Tokyo Hitoshi HANO On behalf of the Acfa-Sim-J.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
Mitglied der Helmholtz-Gemeinschaft Hit Reconstruction for the Luminosity Monitor March 3 rd 2009 | T. Randriamalala, J. Ritman and T. Stockmanns.
LumiCal High density compact calorimeter at the ILC Wojciech Wierba Institute of Nuclear Physics PAS Cracow, Poland.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
On behalf of the Acfa-Sim-J Group
Luminosity and Beamtuning Calorimeters in the very Forward Region
Performance of jets algorithms in ATLAS
FCAL R&D towards a prototype of very compact calorimeter
Luminosity Measurement using BHABHA events
The very forward region Tel-Aviv meeting summary
LAT performance studies
Workshop on Forward Calorimetry Prague, April 16 Impact of Bhabha scattering on the BeamCal performances Vladimir Drugakov NC PHEP, Minsk/DESY Zeuthen.
Presentation transcript:

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Dense design Design variations Luminosity study Future steps 1.Phi bias 2. Delta theta 3. Real life approach 4. New selection mechanism 1. Moliere radius 2. Radiation length 3. Detector properties 4. Design optimization 1. Margins design properties 2. Events close to margins 3. Maximum pick shower design 4. Remarks Prague follow up

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Constant value 250 GeV Fixed non zero bias under investigation. Events Num. E weight. Log. weight. Azimuthal reconstruction

Two plots convinced us that the bias observed is not detector design dependent nor imperfect algorithm. HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 48 sectors design X (cm) Y (cm)

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Magnetic field

Constant value 400 GeV HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Log. weight. E weight. Polar reconstruction

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector ‘Pure’ electrons simulation Bhabha+Beam+BS(5e-4) Bias study

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Real life algorithm Working with both sides of the detector and looking at the difference between the reconstructed properties: (In real life we don’t have generated properties)

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Polar resolution

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Energy resolution

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 33 mrad Energy Resolution The most significant event selection cut is the geometric acceptance cut. This cut was used to get the best energy, angular resolutions and minimum biases. Events selection

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Out In Eout - Ein Eout + Ein P= New selection cut Ring Signal

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Eout-Ein Eout+Ein P= Out In

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 3 cylinders 3 Rings 2 cylinders 3 Rings 1 cylinders 3 Rings Eout-Ein Eout+Ein P=

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Dense design 0.34 cm Tungsten 0.31 cm Silicon 15 cylinders * 24 sectors * 30 rings = cells 8 cm 28 cm 0.55 cm Tungsten 0.1 cm Silicon R L 20 cm 6.1 m

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Basic properties ?

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Moliere radius 0.8cm 1.1cm X (cm) Detector Signal

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Radiation length 30 radiation length detector 47 radiation length detector Z (cm) Detector Signal

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Optimization

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 16 cylinders 40 rings 15 cylinders 30 rings Polar resolution & bias

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 16 cylinders 40 rings 15 cylinders 30 rings Energy resolution

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Energy Resolution Events New geometric acceptance

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Optimization

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Optimization

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Margins around cells Having margins Means Losing Information

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector One cylinder One sector Radius (cm) (deg) Detector signal Loosing information

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Energy resolution

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Polar resolution

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Our basic detector is designed with 30 rings * 24 sectors * 15 cylinders = 10,800 channels Do we use these channels in the most effective way ? Maximum pick shower design 30 rings 15 cylinders 20 cylinders 10 cylinders 24 sectors * 15 rings * (10 cylinders + 20 cylinders) = 10,800 channels 4 rings15 rings11 rings 10 cylinders

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Maximum pick shower design Basic Design Angular resolution improvement without changing the number of channels Other properties remain the same Constant value Polar reconstruction 0.11e-3 rad 0.13e-3 rad

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Remarks Options to minimize the margin effect: 1.Rings rotation. 2.Different cylinders segmentation Maximum pick shower design can enable us to reduce the number of channels while maintaining properties or to improve properties while kipping the same number of channels.

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Pure electron MC Detector properties Events selection ‘Real physics’ MC + digitization noise + New max pick design + Margins Final optimization ‘Real physics’ MC Bhabha + Beamstrahlung + Beamspread R&D status & future steps High statistics MC for required precision

HEP Tel Aviv UniversityLumical - A Future Linear Collider detector THE END