Search for double electron capture in 106 Cd using HPGe detectors and Si pixel detectors Ivan Štekl for TGV collaboration Institute of Experimental and.

Slides:



Advertisements
Similar presentations
Advanced GAmma Tracking Array
Advertisements

Double beta decay and astroparticle projects in IEAP CTU (NuPECC, Prague, 2011) List of projects: 1) TGV experiment – measurement of 2 EC/EC decay of 106.
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
K. Zuber, Uni. Sussex IDEA Meeting, Milano 9. Nov Status of COBRA.
COBRA Kai Zuber University of Sussex 5 th SNOLAB Workshop,
August 12, 2000DPF Search for B +  K + l + l - and B 0  K* 0 l + l - Theoretical predictions and experimental status Analysis methods Signal.
M. Dracos 1 Double Beta experiment with emulsions?
GERDA: GERmanium Detector Array
Erice, Kai Zuber1 Status of the COBRA Experiment K. Zuber, TU Dresden.
Status of COBRA K. Zuber, Univ. of Sussex Blaubeuren, July 2007.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
New limits on  + EC and ECEC processes in 74 Se and 120 Te A.S. Barabash 1), F. Hubert 2), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow,
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Advanced semiconductor detectors of neutrons
Energy calibration of the threshold of Medipix for ATLAS Céline Lebel Université de Montréal presenting for the Institut of Experimental.
Upgrade and progess on the COBRA double beta detector Sudbury, 26. August 2010 Kai Zuber.
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
The CUORE experiment Thomas Bloxham Lawrence Berkeley National Lab PHENO 2011 May 9th 2011.
Search for double electron capture in 106 Cd using HPGe detectors and Si pixel detectors Ivan Štekl for TGV collaboration Institute of Experimental and.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Welcome talk IDEA meeting, Prague, MEDEX workshop news 2.Present status of the TGV II 3.Organization remarks I.Štekl Institute of experimental.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
Experimental Studies of Spatial Distributions of Neutrons Produced by Set-ups with Thick Lead Target Irradiated by Relativistic Protons Vladimír Wagner.
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
Telescope Germanium Vertical Telescope Germanium Vertical JINR Dubna, Russia CSNSM Orsay, France CTU Prague, Czech Republic RRC - Kurchatov Institute Moscow,
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
Present and future activities in LSM (2 nd LSM Extension WORKSHOP, Oct.16, 2009) (1) TGV experiment – measurement of 2 EC/EC decay of 106 Cd (2) R&D of.
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Pia Loaiza AARM-Berkeley March 2010
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
Neutrinoless double electron capture experiment at LSM University of Muenster, Germany (Dieter Frekers et al.) Technical University of Dresden, Germany.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Equalization of Medipix2 imaging detector energy thresholds using measurement of polychromatic X-ray beam attenuation Josef Uher a,b, Jan Jakubek c a CSIRO.
P. CermakRez near Prague, December 2005 EC/EC process measurement in TGV experiment For TGV collaboration: JINR Dubna, Russia CTU Prague, Czech Republic.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
DEVELOPMENT OF PIXELLATED SEMICONDUCTOR DETECTORS FOR NEUTRON DETECTION Prof. Christer Fröjdh Mid Sweden University.
From Edelweiss I to Edelweiss II
The COBRA Experiment: Future Prospects
Prompt Gamma Activation Analysis on 76Ge
Performance of the Medipix and Timepix devices for the recognition of electron-gamma radiation fields C. Teyssier1,3, J. Bouchami1, F. Dallaire1, J. Idarraga1,
Very preliminary study of the random background for the BiPo detector (PhoSwich configuration) Work done by Jonathan Ferracci.
Sr-84 0n EC/b+ decay search with SrCl2 crystal
• • • Ge measurements for SuperNEMO
Presentation transcript:

Search for double electron capture in 106 Cd using HPGe detectors and Si pixel detectors Ivan Štekl for TGV collaboration Institute of Experimental and Applied Physics Czech Technical University in Prague TGV experiment – TGV II detector description, results of Phases I and II Present status - utilization of Si pixel detectors (MC simulations, results of background measurements) Future plans JINR Dubna, Russia IEAP CTU in Prague, Czech Republic CSNSM Orsay, France Since 2000, focus on 2 EC/EC decay of 106 Cd

106 Cd 106 Ag 106 Pd   622 Q(EC/EC) = 2770 keV  % 1+1+  +  +  +/EC EC/EC 2νEC/EC 2KX Pd (~21 keV) (+  for e.s.) Main background: Cd KX-rays (~23 keV)  +/EC KXPd + 2  511 (+  for e.s.) νEC/EC KXPd + LXPd +  2741 (   512)  2229  2741  +  + 4  511 (+  for e.s.)  1046  νEC/EC 2KXPd + (    512)

Laboratoire Souterrain de Modane, France Phase I ~ 10g (12 foils) of 106 Cd (75%) and ~ 3.2 g (4 foils) of Cd-nat., T= 8687h (Feb.2005 – Feb.2006) Phase II ~ 13.6 g (16 foils) of 106 Cd (75%), T ~ 12900h (Dec.2007 – July 2009) Background I no samples (Aug.2009 – March 2010) Background II 16 samples of Cd.-nat (April 2010 – …2011)

Telescope Germanium Vertical (TGV-2) 32 HPGe planar detectors  60 mm x 6 mm with sensitive volume: 20.4 cm 2 x 6 mm Total sensitive volume: ~400 cm 3 Total mass of detectors: ~3 kg Total area of samples : 330 cm 2 Total mass of sample(s) : 10  25 g Total efficiency : 50  70 % E-resolution : 3  4 60 Co LE-threshold : 40  50 keV (5  6 keV) Double beta emitters: 16 samples (~ 50 µm ) of 106 Cd (enrich.75%) 13.6 g ~ 5.79 x atoms of 106 Cd HPGe Cd

TGV-2 Detectors: 32 HPGe Ø 60 mm x 6 mm Sensitive volume 20.4 cm 2 x 6 mm Total sensitive volume ~ 400 cm 3 Total mass ~3 kg Details of cryostat ~2500 g (Al, Cu, …) Al ~ 1200 g (including holders ~ 360 g) Cu ~ 1300 g

PASSIVE SHIELDING (located in LSM) Copper > 20 cm Airtight box Lead > 10 cm Polyethylene filled with boron 16 cm

Phase I final result acquisition with 10g of 106 Cd after 8687 hours: additional analysis (2D, different energy windows)

KXPd KXCd ROI Phase II, 13.6g of 106 Cd, T=12900h

Phase I Phase II EC/EC T 1/2 ≥ …(90%CL) T 1/2 ≥ … (90%CL) (0 + →0 +,g.s.) 3.0 x yr 4.2 x yr (0 + →2 + 1,512) 4.2 x yr 1.2 x yr (0 + →0 + 1,1334) 3.1 x yr 1.0 x yr 0 res.(0 + →4 +,2741) x yr 0 res.(0 + → ?,2716) x yr β + /EC (0 + →0 +,g.s.) 5.9 x yr 1.1 x yr (0 + →2 + 1,512) 5.9 x yr 1.1 x yr (0 + →0 + 1,1334) x yr β + (0 + →0 +,g.s.) 6.0 x yr 1.4 x yr (0 + →2 + 1,512) 5.7 x yr 1.7 x yr 2 β + β +  (0 + →0 +,g.s.) x yr (N.I.Rukhadze et al., Nucl.Phys. A 852, 2011, )

How it compares with calculations > p.w. approaching closed

24 g of 106 Cd with enrichment of 98.4 % Plans on near future Planned measurements with 106 Cd: 1.TGV-2 (Ge detectors) ( ~14-15 g ) cm 3 HPGe detector ( ~24 g ) (modes with  ) 3.SPT (Pixel detectors) ( ~8-10 g )

Approaches to double beta studies Segmented CdTe pixel detectors (enriched Cd) Signature = two tracks of electrons from one pixel, Bragg curve Particle identification / rejection (alpha, electrons, photons) Si pixel detectors in coincidence mode Thin foil of enriched isotope Signature = two hitted pixels with X- rays of precise energy Efficiency (factor 2x comparing with TGV II) Particle identification (alpha, electrons) Pixel R&D projects Setup based on semiconductor detectors TGV II COBRACUORESuperNEMOGERDA Detector = source Tracking + scintillator Low-temp. detector Semiconductor + segmentation COBRA extensionTGV III (EC/EC) Observable: 2× 21keV X-rays from 106 Pd daughter originated in the enriched Cd foil K1K1 K2K2 K1K1 K2K2 K1K1 K1K1 K2K2 Double-side eventSingle-side events

Timepix detector Portable tracking detector Room temperature & noiseless operation Chipboard + USB readout interface Vacuum operation, no cooling USB readout interface (developed in IEAP CTU in Prague), frame-rate up to 5 fps (USB 1.1) Compact size, Plug&Play, hot swap Fully USB powered Integrated source of variable detector bias voltage (5 – 100V) Pixelman software package + plugin for particle identification Pixelman software package (developed in IEAP CTU in Prague)

May 5, 2010 Pavel Cermak Response examples Particle type identification Clusters selected according to size, roundness, linearity,... AlphasElectronsMuons Muons +  electrons 214 Bi  214 Po  210 Pb  

a) MC results: KK events, source-detector distance = 1 mm D 34.5% of registered KK events D (0.7 – 4) mm => 68% of registered KK events Mean distance = 3.2 mm KK events, source-detector distance = 0 mm D 84.7% of registered KK events D 98.7% of registered KK events Mean distance = 1.2 mm b) For background measurement: D (0.7 – 4) mm => 25% of registered bg events Using distance cut D (0.7-4) mm Results of MC: Improving S/B ratio by factor of 2.6 Distance of pixels hit (comparison of MC and meas.) Bg measurement from LSM:

1) Selection of materials, design of detector : to suppress intrinsic background 2) Background measurement with single Si pixel det.: surface + underground (LSM), 1 month; 1s s time window, Pb shield 3) Development of coincidence mode: stack of pixel detectors (face2face arrangement). Activities performed with Si pixel detectors

Intrinsic background Chipboard with Si detector Measured by low-background setup in Modane lab HPGe planar detector, 150cm 3, range 20keV – 1.5MeV Bonding (In+Sn)Readout chipEmpty PCBSi module 228 Th< < ± 8187 ± Th< < ± ± K< < 6.2< ± 28 Contributions per unit (comparison of samples and Si module) [mBq/unit]:

Intrinsic background (PCB material screening results) material Mass (g) Time (s) Unit 226 Ra 210 Pb 228 Ra 228 Th 40 K FR4 (original PCB) mBq/Kg 14259± ± ± ± 648 <2025 (Kapton + Ad+Cu) mBq/Kg 207±76<3200<215170±76<1760 Cu foil mBq/Kg <126<4500<293< ± 315 Adhesive mBq/kg <556<16000<1400 <9000 Coverlay (mask) mBq/Kg <1500<40000<3500 <28000 Cuflon mBq/Kg <16<134<39<16<280

Background measurements with Si pixel detectors in LSM and IEAP CTU (1s or 0.1s time window) were finished. Measurement of background Location/ Description Prague IEAP 1 s frames LSM 1s frames Length 113 hours487 hours

Energy Spectrum (SSE = two X-rays registered in one frame by different pixels) 1 s frame PragueModane

Energy Spectrum (SSE, distance between pixels 0.7mm - 4mm) 1s frame PragueModane

E1 vs E2 (SSE, 0.7mm - 4mm) PragueModane

All Double frames All doubleSSE 0.7 – 4 mm All events ROI (19,22) keV (from energy spectrum) ROI (19,22) keV (from E1 vs E2) Prague Modane Data given for 487 hours

Timepix stack and other developments  Timepix Stack Prototype tested with D class Timepix  CuFlon Based PCB ready for wire bonding  Considering Flexible PCB for next generation of stack  Flexible PCB based design allows to keep the detector very close to each other First prototype ready and tested (face to face configuration) First prototype of CuFlon based chip board Current Timepix stack Planned next version Detectors face to face Flexible PCB Chip support (CuFlon or Pure copper) Detectors very near to each other Support system

SPT setup proposal Estimation of limit for EC/EC decay of 106 Cd for 1 pair of Timepix quads: If background = 0 : T 1/2 > (e. t. N at. ln2) / ln (1-CL) = 1,95 × years 90% CL  ln (1-CL) = 2.3 e full efficiency (for SPT = 8,54 %) t time of measurement [years], expected 4 years N at... number of 106 Cd atoms in foil, 98% of enrichment  N at = 1.89 × atoms To reach limit of years: We would need 5-7 quad Timepix pairs in 1. prototype (for 8 gr. we need quad pairs)

Summary and future plans Study of 2 EC/EC of 106 Cd, modes with gammas (HPGe detector) TGV-2 setup (based on HPGe detector telescope TGV) has provided result comparable with theoretical predictions 24 grams of 106 Cd (98.4% enrichment) available – TGV, SPT, background level Considering next generation setup SPT (Silicon Pixel Telescope) based on Si pixel detectors TimePix Heading for a prototype based on the four-fold Si Timepix stack (face-to-face arrangement) The study of the posibility to measure 0 EC/EC decay ( 152 Gd g.s., 112 Sn exc. state– resonance enhancement of the 0 EC/EC process if Q – Q r < 1 keV) Z.Sujkowski, S.Wycech, Phys. Rev. C70, , 2004 J.Bernabeu, A. deRujula, C.Jarlskog, Nucl. Phys. B223, 15 (1983) signature – X-rays < 100 keV +  or e - e + or Majoron advantage: good value of the rates between 0 EC/EC and 2 EC/EC processes

Backup slides

2e b - + (A,Z) → (A,Z-2) + 2X + (  brem, 2 , e + e -, e- int ) E ,.. =  M -  e1 -  e2 Suppression factor is ~ 10 4 (in comparison with EC  +(0 )) – M. Doi and T. Kotani, Prog. Theor. Phys. 89 (1993) EC/EC DECAY 0 EC/EC Resonance Conditions Q‘(E*) =  M - E* - 2E b  Q’res  < 1 keV Enhancement factor can be on the level ~ 10 6 ! (for 112 Sn) - J. Bernabeu et.al., Nucl. Phys. B 223 (1983) 15 0 EC/EC Resonant Decay of 106 Cd  M= 2770±7.2 keV E*= keV E K =24.3 keV E L =3.33 keV E*= keV E K =24.3 keV E K =24.3 keV

The calculated probability of detection of the peak of KX(Pd) Likelihood probability function of 21 keV events KXPd

KK TGV signal patterns β + β +  -pair E1E1 E2E2 E1E1 E2E2 E1E1 E2E2 E1E1 E2E2 E 1 +E 2 =  D    D -paired E1=DE1=D E1E1  D -single E 1 =E 2 = K Pd  D )-pair E1E1 E2E2  1.  -pair +  D -satellite (single or paired) E1E1 E2E2  2.  E1E1 E2E2 E1E1 E2E2 E 1 +E 2 =511 keV    511 -paired E 1 =511 keV E1E1  511 -single E 1 <511 keV E1E1  511 -fired  -pair candidate E1E1 E2E2 E1E1 E2E2  -pair +  -satellite (single, paired, or fired) E2E2 E1E1  E 1 +E 2 != 511 keV

Comparision of background in Phase I and Phase II

Setup with 2 mm thick Si Timepix detector, source distance = 1 mm: Number of good KK-events registered in two pixels: % - double-side events (DSE): % - single-side events (SSE): % - single-side events in adjacent pixels: % Number of events with energy deposit in foil: 76.0 % Setup with 2 mm thick Si Timepix detector, source distance = 1  m: Number of good KK-events registered in two pixels: % - double-side events (DSE): % - single-side events (SSE): % - single-side events in adjacent pixels: 0.16 % Number of events with energy deposit in foil: 76.2 % SPT efficiency of registration (compare with 5.5% for TGV-II): SPT MC simulations (2)

Background signal measurement E1.vs.E2 SSE Entries days of experimental data from LSM, shielded 5cm of Pb, 1s frames ROI Energy spectrum (up to 300keV) Looking for SSE candidates (2 clusters in the frame) Only random coincidences, 0 events in the ROI (19-23 keV)

Next step – using stack of Timepix detectors To build a prototype based on the four-fold Timepix stack Developed slightly modified boards allowing face-to-face configuration Further optimization of the chip carrier board (material of PCB, minimizing amount of material close to the chip)