Dipa Bandyopadhyay University of York

Slides:



Advertisements
Similar presentations
LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
Advertisements

Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
University of Liverpool
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Pavel Stránský 29 th August 2011 W HAT DRIVES NUCLEI TO BE PROLATE? Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Alejandro.
The Collective Model Aard Keimpema.
Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
Nuclear Low-lying Spectrum and Quantum Phase Transition Zhipan Li School of Physical Science and Technology Southwest University 17th Nuclear Physics Workshop,
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
(An outgrowth of our studies of shape/phase transitions and empirical signatures for them) A) An enhanced link between nuclear masses and structure B)
UNIVERSITY OF JYVÄSKYLÄ Lifetime measurements probing triple shape coexistence in 175 Au Tuomas Grahn Department of Physics University of Jyväskylä The.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Reiner Krücken - Yale University Reiner Krücken Wright Nuclear Structure Laboratory Yale University Why do we measure lifetimes ? The recoil-distance method.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, (2005); PRC 76, (2007); PRC 78, (2008); PRC 79,
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Collective Model. Nuclei Z N Character j Q obs. Q sp. Qobs/Qsp 17 O 8 9 doubly magic+1n 5/ K doubly magic -1p 3/
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
Quadrupole collectivity in neutron-rich Cd isotopes Thorsten Kröll for the IS411/IS477/IS524 collaborations Work supported by BMBF (Nr. 06DA9036I and 05P12RDCIA),
Shape phase transition in neutron-rich even-even light nuclei with Z=20-28 H.B.Bai X.W.Li H.F.Dong W.C.Cao Department of Physics, Chifeng University, Chifeng.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
The changing structure of 160 Er from low to ultrahigh spin J. Ollier Daresbury Laboratory.
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Erosion of N=28 Shell Gap and Triple Shape Coexistence in the vicinity of 44 S M. KIMURA (HOKKAIDO UNIV.) Y. TANIGUCHI (RIKEN), Y. KANADA-EN’YO(KYOTO UNIV.)
How do nuclei rotate? The nucleus rotates as a whole.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Linking Transitions (and Search for Superintruders) in the A  80 Region of Superdeformation Nilsson Conf. Lund, Sweden 17 June 2005 C. J. Chiara, D. G.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Quantum Phase Transitions (QPT) in Finite Nuclei R. F. Casten June 21, 2010, CERN/ISOLDE.
Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Andreas Görgen INTC Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Quantum phase transitions and structural evolution in nuclei.
Quantum Phase Transitions in Nuclei
Observation of new neutron-deficient multinucleon transfer reactions
UNIVERSITY OF JYVÄSKYLÄ Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of 208 Po and 210,212 Rn Addendum.
Quantum Phase Transition from Spherical to γ-unstable for Bose-Fermi System Mahmut Böyükata Kırıkkale University Turkey collabration with Padova–Sevilla.
R.Burcu Cakirli*, L. Amon, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, M. Kowalska,
E0 DECAY OF THE LEVELS IN 156 DY AND 160 ER G. Lo Bianco, S. Nardelli, S. Das Gupta, D.L. Balabanski, N. Blasi, K. Gladnishki, A. Saltarelli, L.
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
Mass spectrometry of neutron-rich chromium isotopes into the N = 40 “island of inversion” Vladimir Manea CERN, Geneva, Switzerland D. Atanasov, K. Blaum,
Technical solutions for N=Z Physics David Jenkins.
E.Clément Novembre 2011 E.Clément-GANIL Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE,
Nuclear Low-lying Spectrum and Quantum Phase Transition 李志攀 西南大学物理科学与技术学院.
KS group meeting April 2007Transfer reactions at REX-ISOLDE: Status and a physical case to be studied K. U. Leuven One Nucleon Transfer Reactions Around.
Coulomb excitation of the two proton-hole nucleus 206 Hg CERN-ISOLDE, Geneva, Switzerland (M. Kowalska, E. Rapisarda, T. Stora, F.J.C. Wenander) GSI, Darmstadt,
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Rotational energy term in the empirical formula for the yrast energies in even-even nuclei Eunja Ha and S. W. Hong Department of Physics, Sungkyunkwan.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
Shape parameterization
Yu Zhang(张宇), Feng Pan(潘峰)
oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization
Thorsten Kröll* / Gary Simpson+
Emmanuel Clément IN2P3/GANIL – Caen France
Studies of Pear Shaped Nuclei using rare isotope beams
Isomers and shape transitions in the n-rich A~190 region:
Nuclear Chemistry CHEM 396 Chapter 4, Part B Dr. Ahmad Hamaed
Presentation transcript:

Dipa Bandyopadhyay University of York Exploring the X(5) characteristic in the mass A ~ 80 region : Coulomb excitation of 78Sr nucleus Dipa Bandyopadhyay University of York INTC meeting, CERN INTC Meeting, CERN, Geneva

Microscopic picture in the region A ~80 Ref: Nazarewicz et al., NPA 435, (1985) 397 40 At prolate shape (2~0.35) the largest gap appears for particle number 38 which corresponds to Z of Sr isotopes. At oblate shape (2 ~-0.3) the major shell gap occurs at particle number 36, which corresponds to N of 74Sr. INTC meeting, CERN INTC Meeting, CERN, Geneva

Competition between different shapes may create transitional region. Energy surfaces obtained with Woods-Saxon potential : shape change with change in neutron number Prolate : 78Sr Prolate + Oblate : 74,76Sr, 80Sr Prolate-Spherical -Oblate : 80Sr Prolate-Spherical: 82Sr Spherical : 84Sr Ref: Nazarewicz et al., NPA 435 (1985) 397 Competition between different shapes may create transitional region. INTC meeting, CERN INTC Meeting, CERN, Geneva

Np, N n ~ number of valence protons and neutrons. For X(5), P factor estimation : A measure of deformation driving quadrupole quadrupole force vs spherical driving pairing force. Np, N n ~ number of valence protons and neutrons. For X(5), [ E. A. McCutchan et al, PRC 70, 011304 ] N=90 82 p-drip line Z 50 78,80Zr 76,78Sr 28 28 50 82 126 N N-drip line INTC meeting, CERN INTC Meeting, CERN, Geneva

Critical points in Symmetry (Casten) Triangle [F Iachello PRL 85, 3580(2000); PRL 87 052502(2001)] U(5) =0 Spherical harmonic vibrator V=V(), > 0,  independent V=V(), > 0,  = 0 X(5) E(5) SU(3) O(6)  > 0, =0  > 0, unstable Axially deformed rotor  unstable deformed rotor INTC meeting, CERN INTC Meeting, CERN, Geneva

Examples of X(5) symmetry ~ N=90 isotones (152Sm) Casten & Zamfir PRL 87, 052503(2001) R 4/2 = E(41+)/E(21+) = 2.90; E(02+)/E(21+) = 5.65; Larger energy spacing in the excited band; B(E2)s of yrast transitions are in between that of vibrator and rotor; B(E2)s of non yrast transitions are smaller compared to that of yrast transitions. INTC meeting, CERN INTC Meeting, CERN, Geneva

Candidate for X(5) symmetry; 78Sr D. S. Brenner et al, AIP Conference Proceedings 638, 223 (2002) INTC meeting, CERN INTC Meeting, CERN, Geneva

76,78Sr Systematic of Sr nuclei (Z=38) : R4/2 ~ E(41+)/E(21+) 3.33 2.90 2.0 INTC meeting, CERN INTC Meeting, CERN, Geneva

E(41+)/E(21+) systematic; A~80 : expected value for X(5) ~ 2.90 42 2.34 2.23 2.11 40 2.86 2.56 2.34 2.22 2.02 38 2.81 2.54 2.23 2.85 2.32 2.07 Z 36 2.38 1.86 2.22 2.11 2.16 2.11 2.31 34 2.28 2.16 1.90 2.15 2.38 2.45 2.37 2.65 2.28 2.27 2.23 2.07 2.07 2.46 2.50 2.54 2.64 32 30 2.18 2.29 2.32 2.36 2.24 2.02 30 32 34 36 38 40 42 44 46 48 N INTC meeting, CERN INTC Meeting, CERN, Geneva

R4/2 systematic and the P factor estimations are necessary but not sufficient conditions to characterize a nucleus as X(5). INTC meeting, CERN INTC Meeting, CERN, Geneva

Many nuclei which follow the expected X(5) trend closely!!!! Clark et al PRC 68, 037301(2003) INTC meeting, CERN INTC Meeting, CERN, Geneva

…Fail to follow their X(5) characteristics except : 126Ba, 130Ce & Clark et al PRC 68, 037301(2003) …Fail to follow their X(5) characteristics except : 126Ba, 130Ce & N=90 isotones from Nd (Z=60) to Er (Z=68). INTC meeting, CERN INTC Meeting, CERN, Geneva

We must measure the transition strengths between the levels of the yrast and non yrast bands along with the level energies to confirm the X(5) assignment to 78Sr. INTC meeting, CERN INTC Meeting, CERN, Geneva

Yrast band energies upto 26ħ. B(E2)s of first 2 yrast transitions. Known: Yrast band energies upto 26ħ. B(E2)s of first 2 yrast transitions. Negative parity non yrast band. Tentative positive parity band. We will measure: The second 0+ band. B(E2)s of yrast states upto 8ħ. B(E2; 02+  21+). [B(E2; 22+  02+)]. INTC meeting, CERN INTC Meeting, CERN, Geneva

X(5) prediction demands it to be 4+ 2+ 0+ transition Fusion-evaporation approach: 58Ni(28Si,2)78Sr Gammasphere + microball D. Rudolph et al, Phys. Rev C56,(1997)98 ??? X(5) prediction demands it to be 4+ 2+ 0+ transition INTC meeting, CERN INTC Meeting, CERN, Geneva

Fusion-evaporation approach: 40Ca(40Ca,2p)78Sr , 118 and 121 MeV, Jurogam + RITU Nuclear physics group, University of York 278 keV gated -ray spectra 1200 77Rb has very similar half life and  endpoint energies compared to 78Sr. So -tagging is not very effective in this case. 77,78Rb has very similar energies [ 77Rb: 501.9 (2), Ig ~ 100% ], [ 78Rb: 278.3 (2), Ig ~ 100% and 503.2 (4), Ig ~ 80% keV ] compared to that of 78Sr [ 278.5(4), Ig ~ 100% & 503.7(4), Ig ~ 100% keV ]. Hence  gating is also not very effective. INTC meeting, CERN INTC Meeting, CERN, Geneva

Pure intense radioactive beam of 78Sr. Requirement Pure intense radioactive beam of 78Sr. Problem 78Rb will be produced with several magnitude higher (~109) compared to 78Sr (~106) Solution Electron beam ion source (EBIS) Successfully used to produce light Sr nuclei at CERN-ISOLDE Nucl. Phys. 763A, 45 (2005) Procedure CF4 gas is introduced in the ion source to form SrF+. No high-rate contaminants not specially RbF+ is expected. INTC meeting, CERN INTC Meeting, CERN, Geneva

3.0 MeV/A 78Sr on 1 mg/cm2 58Ni target; Coulomb excitation of 78Sr : Target selection 3.0 MeV/A 78Sr on 1 mg/cm2 58Ni target; MINIBALL efficiency : 10%; CD detector angle – 150 – 500 in laboratory frame. 58Ni Higher Z gives higher yield but looses in kinematic focusing!!! INTC meeting, CERN INTC Meeting, CERN, Geneva

Coulomb excitation of 78Sr : yield estimate 3.0 MeV/A 5x104 ions/sec 78Sr on 1 mg/cm2 58Ni target; MINIBALL efficiency : 10%; CD detector angle – 150 – 500 in laboratory frame. 106 105 104 103 Yield / 10 days 102 101 100 21+ 41+ 61+ 02+ 22+ 81+ 42+ Aim : E(02+), E(22+) and E(42+) , B(E2; 81+  61+), B(E2; 61+  41+), B(E2; 02+  21+), [B(E2; 22+  02+)] INTC meeting, CERN INTC Meeting, CERN, Geneva

Coulomb excitation of 78Sr Requesting Beam : 78Sr [ T½ ~ 2.5 min ] Energy : 3.0 MeV/A Beam time : 10 days [Considering the challenges related to maintain a stable high intensity beam, we agree to accept 10 days beam time separated in different time slots] Ion source : EBIS with CF4 gas [ Beam with Rb contamination is not acceptable] Beam intensity : > 5 x 104 s-1 (Assumed 3 out of 12 pulses from the PSB to ISOLDE and total 2% transmission efficiency) Primary target : Nb metal powder of thickness 50 gm/cm2 Secondary target : 58Ni of thickness 1 mg/cm2 Detectors : MINIBALL + CD INTC meeting, CERN INTC Meeting, CERN, Geneva

Collaboration D. Bandyopadhyay University of York, UK Spokesperson C. J. Barton University of York, UK J. E. Butterworth University of York, UK R. Wadsworth University of York, UK B. S. Nara Singh University of York, UK D. Jenkins University of York, UK M. Bentley University of York, UK S. Fox University of York, UK P. E. Garrett University of Guelph, Canada C. E. Svensson University of Guelph, Canada E. Clement CEA-Saclay, France Contactperson N. Pietralla Technische Universitaet Darmstadt, Germany L. M. Fraile CERN, Switzerland P. Delahaye CERN, Switzerland F. Wenander CERN, Switzerland N. Warr University of Koln,Germany J. Cederkall Lund University, Sweden A. Ekstrom Lund University, Sweden R. Krucken TU Munich, Germany T. Kroll TU Munich, Germany R. Gernhauser TU Munich, Germany The MINIBALL and REX-ISOLDE collaboration. INTC meeting, CERN INTC Meeting, CERN, Geneva

ADDENDUM INTC meeting, CERN INTC Meeting, CERN, Geneva

The CD detector at 150 – 500 detects most of the scattered particles INTC meeting, CERN INTC Meeting, CERN, Geneva

Rutherford X-section estimate CD detector angle INTC meeting, CERN INTC Meeting, CERN, Geneva

INTC meeting, CERN INTC Meeting, CERN, Geneva

INTC meeting, CERN INTC Meeting, CERN, Geneva

78Sr 80Zr Systematic of N=40 nuclei : R4/2 ~ E(41+)/E(21+) 3.33 2.90 2.0 INTC meeting, CERN INTC Meeting, CERN, Geneva

78Sr Systematic of N=40 nuclei : B(E2; 21+ 01+) INTC meeting, CERN INTC Meeting, CERN, Geneva

H= - ħ2/2B[(1/4)(4/)/1/(2sin3) Bohr Hamiltonian : H= - ħ2/2B[(1/4)(4/)/1/(2sin3) (sin3//–Q2k/sin2V] k This Hamiltonian lives in 5-dimensional space with two intrinsic variables ,  and three Euler angles  i(i=1,2,3) If potential depends only on , V(,) = U(), one can write separating the variables, H = (,  i) + Eƒ(  ) The second part of the Hamiltonian is exactly solvable in a five- dimensional infinite potential well corresponding to E(5) symmetry, U() = 0,    w , u() = ,  >  w. >> phase transitions in coordinate. INTC meeting, CERN INTC Meeting, CERN, Geneva

Q2k/sin2=4/3 (Q12+Q22+Q32)+Q32 [(1/ sin2 X(5) symmetry : connecting U(5) and SU(3) Situation is much more complex compared to E(5). Bohr Hamiltonian does not support any other exact solution like E(5). However, there is an approximate solution to Bohr Hamiltonian, which describes many of the properties of the X(5). Consider the potential at = 00 Q2k/sin2=4/3 (Q12+Q22+Q32)+Q32 [(1/ sin2  And look for solution like, (,, i) = LK(,) DL M,K ( i) Separate the potential (approximately) in  and with a square well potential for  and harmonic oscillator potential for  U(,) = u() + u() The equation can be solved now and the corresponding symmetry is known as X(5) symmetry. INTC meeting, CERN INTC Meeting, CERN, Geneva

SU(3) O(6) U(5) X(5) E(5) Property Importance of E02+ state in case of transitional nuclei: 5.65 3.03 Second excitation : R = (E02 – E01)/ (E21 – E01) 3.33 2.50 2.00 2.90 2.20 Initial excitations R = (E41 – E01)/ SU(3) O(6) U(5) X(5) E(5) Property INTC meeting, CERN INTC Meeting, CERN, Geneva

78Sr 98Sr Systematic of Sr isotopes (Z=38) : B(E2; 21+ 01+) Collective Sharp change in observable : signature of shape transition INTC meeting, CERN INTC Meeting, CERN, Geneva

INTC meeting, CERN INTC Meeting, CERN, Geneva

Isotope chart 2.2 x106 2.4 x109 INTC meeting, CERN INTC Meeting, CERN, Geneva