Presentation is loading. Please wait.

Presentation is loading. Please wait.

Andreas Görgen INTC 31.10.2012 1 Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.

Similar presentations


Presentation on theme: "Andreas Görgen INTC 31.10.2012 1 Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler."— Presentation transcript:

1 Andreas Görgen INTC 31.10.2012 1 Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler 2, J. Cederkäll 3, E. Clément 4, J.-P.Delaroche 5, L. Gaffney 2, M. Girod 5, M.S. Guttormsen 1, T.W. Hagen 1, P. Hoff 6, D.G. Jenkins 7, J. Jolie 8, M. Klintefjord 1, W. Korten 9, A.C. Larsen 1, J.Ljungvall 10, G. O'Neill 2, P. Reiter 8, E. Sahin 1, M.-D. Salsac, S. Siem 1, N. Warr 8, M. Zielinska 9 1 Department of Physics, University of Oslo, Norway 2 Oliver Lodge Laboratory, University of Liverpool, United Kingdom 3 Department of Physics, Lund University, Sweden 4 GANIL, Caen, France 5 CEA-DIF, Bruyères-le-Châtel, France 6 Department of Chemistry, University of Oslo, Norway 7 Department of Physics, University of York, United Kingdom 8 Institut für Kernphysik, Universität zu Köln, Germany 9 CEA Saclay, IRFU/SPhN, France 10 CSNSM, CNRS-IN2P3, Orsay, France

2 Andreas Görgen INTC 31.10.2012 2 Prolate Oblate Regions of shape transitions and coexistence  measurement of collective properties  stringent test of nuclear structure theory Regions of shape transitions and coexistence  measurement of collective properties  stringent test of nuclear structure theory Experimental:  Lifetime measurements  B(E2)  Coulomb excitation  B(E2), Q s Experimental:  Lifetime measurements  B(E2)  Coulomb excitation  B(E2), Q s M.Bender et al. PRC 69, 064303 (2004) A.N.Andreyev et al. Nature 405, 430 (2000) ground-state deformation Gogny HFB

3 Andreas Görgen INTC 31.10.2012 3 Prolate Oblate Regions of shape transitions and coexistence  measurement of collective properties  stringent test of nuclear structure theory Regions of shape transitions and coexistence  measurement of collective properties  stringent test of nuclear structure theory Experimental:  Lifetime measurements  B(E2)  Coulomb excitation  B(E2), Q s Experimental:  Lifetime measurements  B(E2)  Coulomb excitation  B(E2), Q s ground-state deformation Gogny HFB configuration mixing calculation GCM(GOA) 5-dimensional (q 20,q 22, , ,  ) Gogny D1S interaction M.Girod, J.-P.Delaroche CEA Bruyères-le-Châtel Calculations predict transition from prolate to oblate shape with increasing proton number along N=78 Calculations predict transition from prolate to oblate shape with increasing proton number along N=78

4 Andreas Görgen INTC 31.10.2012 4 configuration mixing calculation GCM(GOA) 5-dimensional (q 20,q 22, , ,  ) Gogny D1S interaction M.Girod, J.-P.Delaroche CEA Bruyères-le-Châtel Calculations predict transition from prolate to oblate shape with increasing proton number along N=78 Calculations predict transition from prolate to oblate shape with increasing proton number along N=78 no experimental B(E2) values low-lying (0 + ) state  indication for shape coexistence ?  excited band built on different shape ? no experimental B(E2) values low-lying (0 + ) state  indication for shape coexistence ?  excited band built on different shape ? experiment B(E2) values in e 2 fm 4 no experimental B(E2) values  low-lying excited 0 + state ?   -vibrational band built on oblate shape ? unusual ! no experimental B(E2) values  low-lying excited 0 + state ?   -vibrational band built on oblate shape ? unusual ! 142 Gd

5 Andreas Görgen INTC 31.10.2012 5 142 Gd 78 64 141 Eu 78 63 143 Gd 79 64  h 11/2 2 h 11/2 22 11 0.37 ns 3.4 ns 321110 + 442 751 994 12 + 14 + 16 + 10 + 12 + 14 + 619 3172 1124 140 Sm 78 62 5.2 ns19.4 ns (11/2  ) (15/2  ) (19/2  ) (23/2  ) 466 751 946 189 139 Pm 78 61  h 11/2 634 1089 11/2  176 15/2  (19/2  ) 141 Sm 79 62 h 11/2 11 22  h 11/2 2 indirect evidence for shape coexistence at higher spins ?? poor understanding of low-spin structure need to measure B(E2) and quadrupole moments need to measure B(E2) and quadrupole moments

6 Andreas Görgen INTC 31.10.2012 6 IS495 (July 2012 – 12 shifts): Coulomb excitation: 140 Sm + 94 Mo at 2.85 MeV/u MINIBALL + CD Si detector RILIS + new GdB 6 low-work function cavity M. Klintefjord et al. Univ. Oslo to be published 4 +  2 + (0 + )  2 + 94 Mo 2 +  0 + normalize to excitation of 94 Mo target nucleus (known matrix elements) 94 Mo 2 +  0 + 95 Mo laser ON laser OFF no beam contaminants intensity: 5  10 5 pps no beam contaminants intensity: 5  10 5 pps

7 Andreas Görgen INTC 31.10.2012 7 IS495 (July 2012 – 12 shifts): Coulomb excitation: 140 Sm + 94 Mo at 2.85 MeV/u MINIBALL + CD Si detector RILIS + new GdB 6 low-work function cavity M. Klintefjord et al. Univ. Oslo to be published 4 +  2 + (0 + )  2 + 94 Mo 2 +  0 + complementary lifetime measurement B(E2) values independent of Q s HIL Warsaw 2013  enhance sensitivity to Q s 0+0+ 2+2+ B(E2) QsQs 4+4+ (0 + ) B(E2) QsQs

8 Andreas Görgen INTC 31.10.2012 8 2+2+ 6+6+ (0 + ) 0+0+ 2+2+ B(E2) QsQs 4+4+ (0 + ) B(E2) QsQs new HIE–ISOLDE experiment: Coulomb excitation of 140 Sm on 208 Pb at 4.7 MeV/u  extend B(E2) and Q s to higher-lying states in particular: second 2 + state  Q s (2 1 + )  Q s (2 2 + ) test of shape coexistence hypothesis  measure  (E0)  back detector of T-REX (1mm sufficient to stop 990 keV electrons)  SPEDE (needs further investigation) excitation cross sections for 140 Sm + 208 Pb  experimental excitation energies  matrix elements from theory large gain for multi-step excitation for higher beam energies from HIE-ISOLDE large gain for multi-step excitation for higher beam energies from HIE-ISOLDE  differential measurement: d  /d  (  cm )  together with IS495: d  /d  (Z target )  differential measurement: d  /d  (  cm )  together with IS495: d  /d  (Z target ) 12 shifts of 140 Sm beam

9 Andreas Görgen INTC 31.10.2012 9 experimental energies theoretical B(E2) next step:  Coulomb excitation of 142 Gd goal:  measure sign of Q s (2 1 + ) shape transition from 140 Sm ?  shape transition within ground-state band ?  B(E2) values  search for low-lying 0 + state and Q s  excitation probabilities requires beam development:  laser ionization scheme exists but not tested at ISOLDE  beam intensity and purity to be tested requires beam development:  laser ionization scheme exists but not tested at ISOLDE  beam intensity and purity to be tested 142 Gd + 208 Pb at 4.7 MeV/u 2.5  10 4 pps 1 mg/cm 2 208 Pb 12 shifts GEANT simulation

10 Andreas Görgen INTC 31.10.2012 10 Summary:Coulomb excitation: 140 Sm + 208 Pb at 4.7 MeV/u  extend B(E2) and Q s to higher-lying states  Q s (2 1 + )  Q s (2 2 + ) test of shape coexistence hypothesis  measure  (E0) expected intensity: 5  10 5 pps 12 shifts Coulomb excitation: 142 Gd + 208 Pb at 4.7 MeV/u  measure quadrupole moments  shape transition along N=78 ?  shape transition within GSB ? expected intensity: 2.5  10 4 pps 12 shifts

11 Andreas Görgen INTC 31.10.2012 11 supplementary material

12 Andreas Görgen INTC 31.10.2012 12  multi-step Coulomb excitation at GANIL  differential measurement:  (  )  74 Kr + 208 Pb at 4.7 MeV/u with 10 4 pps 0+0+ 8+8+ 6+6+ 4+4+ 2+2+ 0+0+ 2+2+ 4+4+ 0+0+ 2+2+ E. Clément et al., Phys. Rev. C 75, 054313 (2007) 14 transitional 5 diagonal ME


Download ppt "Andreas Görgen INTC 31.10.2012 1 Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler."

Similar presentations


Ads by Google