1 Ultracolod Photoelectron Beams for ion storage rings CSR E-Cooler TSR (magnetic) e-target e-cooler CSR (electrostatic) E lab : 100-4000 eV Current -

Slides:



Advertisements
Similar presentations
Towards a neutron target and Measuring (n, ɣ) cross sections of the r-process Lothar Buchmann TRIUMF.
Advertisements

D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.
Joe Vinen Workshop on New Experimental Techniques for the Study of Quantum Turbulence, ICTP, Trieste, June 2005 Metastable He molecules and laser-induced.
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
electrostatic ion beam trap
The Dynamics Of Molecules In Intense Ultrashort Laser Fields: Measurements of Ultrashort, Intense Laser-induced Fragmentation of The Simplest Molecular.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
How to explore a system? Photons Electrons Atoms Electrons Photons Atoms.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Simulations of Neutralized Drift Compression D. R. Welch, D. V. Rose Mission Research Corporation Albuquerque, NM S. S. Yu Lawrence Berkeley National.
Beam Dynamics Tutorial, L. Rivkin, EPFL & PSI, Prague, September 2014 Synchrotron radiation in LHC: spectrum and dynamics The Large Hadron Collider (LHC)
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
Thomas Roser RHIC Open Planning Meeting December 3-4, 2003 RHIC II machine plans Electron cooling at RHIC Luminosity upgrade parameters.
Electron Cooling Expected Performance & Construction.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Issues.
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Progress in measurements of dissociative recombination CRP on Atomic and Molecular Data for Plasma Modelling Mats Larsson Department of Physics Stockholm.
Measuring DR cross sections Absolute recombination rate coefficients of tungsten ions from storage-ring experiments Stefan.
HESR 2 Electron Cooling Björn Gålnander The Svedberg Laboratory Uppsala University Midterm Review, DIRACsecondary-Beams December 8, 2006 GSI, Darmstadt.
Storage ring measurements of the Dissociative Recombination of H 3 + : a closer look Holger Kreckel University of Illinois at Urbana-Champaign A fundamental.
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
Nuclear dynamics in the dissociative recombination of H 3 + and its isotopologues Daniel Zajfman Max-Planck-Institut für Kernphysik and Weizmann Institute.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
MEIC Electron Cooler Design Concept. EC potential impact to colliders Reaching a high start luminosity Very short i-bunches achieved by longitudinal cooling.
October 4-5, Electron Lens Overall Design Alexander Pikin October 4, 2010 Electron Lens.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Plasma diagnostics using spectroscopic techniques
Diagnostics for intense e-cooled ion beams by Vsevolod Kamerdzhiev Forschungszentrum Jülich, IKP, COSY ICFA-HB2004, Bensheim, October 19, 2004.
Cooling with Magnetized Electron Beam Y. Derbenev MEIC Spring Collaboration meeting March 30, 2015 CASA/JLab.
The FAIR* Project *Facility for Antiproton and Ion Research Outline:  FAIR layout  Research programs Peter Senger, GSI USTC Hefei Nov. 21, 2006 and CCNU.
ERHIC design status V.Ptitsyn for the eRHIC design team.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE-Collaboration Institut für Kernphysik, Forschungszentrum.
Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Non-conservation of the charge lifetime at high average current R.Barday University Mainz, Germany INFN Milano-LASA 4-6 October 2006.
A high-peak and high-average current, low emittance, long lifetime electron source* for ERL applications Xiangyun Chang June 9, 2015 Patent applied for.
1 NICA Project Report of The Group I S.L.Bogomolov, A.V.Butenko, A.V.Efremov, E.D.Donets, I.N.Meshkov, V.A.Mikhailov, A.O.Sidorin, A.V.Smirnov, Round Table.
Electron cloud in Final Doublet IRENG07) ILC Interaction Region Engineering Design Workshop (IRENG07) September 17-21, 2007, SLAC Lanfa Wang.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
LEPTA: Low Energy Particle Toroidal Accumulator Presented by: Mkhatshwa S. L. Nkabi N. Loqo T. Mbebe N. Supervisor: A. Sidorin SA STUDENT PRACTICE 2010.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
14 th January 2004BDI daySlide 1 ELECTRON COOLING STATUS Why electron cooling? –LHC requirements, implications for LEIR, results of 1997 cooling & stacking.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
The Double ElectroStatic Ion-Ring ExpEriment, DESIREE The other end of the scale from ESS!
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Calculation of Beam Equilibrium and Luminosities for
HIAF Electron Cooling System &
ELENA – Electron Cooler
“Electron cooling device in the project NESR (FAIR)"
Large Booster and Collider Ring
Acceleration of Polarized Protons and Deuterons at HESR/FAIR
PHOTOCATHODE STUDIES Electron Energy Analyzer NEA Cathodes (GaAs)
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
BEAMLINE MAGNETS FOR ALPHA-G
Production of Magnetized Electron Beam from a DC High Voltage Photogun
ELENA Extra Low ENergy Antiproton Ring
Collider Ring Optics & Related Issues
Cooling Time Measurements
Update on ERL Cooler Design Studies
MEIC New Baseline: Part 7
HE-JLEIC: Do We Have a Baseline?
He Zhang, David Douglas, Yuhong Zhang MEIC R&D Meeting, 09/04/2014
Plans for future electron cooling needs PS BD/AC
Presentation transcript:

1 Ultracolod Photoelectron Beams for ion storage rings CSR E-Cooler TSR (magnetic) e-target e-cooler CSR (electrostatic) E lab : eV Current - 2 mA Lifetime - 24 h kT  < 1.0 meV kT || = 0.02 meV Electron-ion collision spectroscopy D. A. Orlov, C. Krantz, A. Shornikov, A. Wolf E lab : 10-1eV Low e-energies: => low current (100-1µA) => higher kT || e-transport by B => slow ions distorted Cooling at eV-energies - it is a challenge! Electron cooling TSR E-target Extremely high resolution is demonstrated! DR of Sc v e = v i 2 v e ≠ v i 6 meV Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany

Dmitry Orlov, MPI-K, PESP-08 2 cold electrons OUTLINE 1 HOW TO: cold e-beams 2 E-cooling Collision resolution 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons 7 Manipulation with eV e-beams at TSR target 4 Why? Electrostatic Cryogenic Storage Ring 3 electron collision TSR ( keV) 5 e-beams of eV energies, CSR cooler

Dmitry Orlov, MPI-K, PESP-08 3 EFEF E vac Thermocathode vacuum T= K kT= meV Cold electrons. How to (A): Photocathode kT C = 10 meV Fully activated cathode: QY= 15-35% QY eff =1 % Laser: 800 nm9 (transmission) 532 nm (reflection) E-current: mA Lifetime : >24 h D.A. Orlov et al., APL, 78 (2001) 2721; Suppression Strong energy and impulse relaxations Energy spreads of about kT E vac E FE F E cE c (CsO) E vE v GaAs vacuum T= 80 K Suppression kT=10 meV Thermocathode kT C > 100 meV

4 Cold electrons. How to make them colder (B): 1. Magnetic expansion B 0 (high field) B guide (low field) 2. Acceleration Reduction of kT  Reduction of kT ||  = 20 Thermocathode kT  = 5-6 meV Photocathode kT  = 0.5 meV kT || = meV Phase-space conservation v║v║ E ΔE Δv Δv' U0U0

5 Cold electrons. How o keep them cold (C): High magnetic field is required 1. To avoid beam divergence 2. To suppress TLR 3. To provide adiabatic transport e e e low current high current high current + magnetic field keeping dT || / dZ < 5 μeV/m : e e B rcrc n e -1/3 r c << n e -1/3 B e R λ c << R λcλc Typical transition lengths R=100 mm

Dmitry Orlov, MPI-K, PESP-08 6 cold electrons 1 HOW TO: cold e-beams 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons 7 Manipulation with eV e-beams at TSR target 4 Why? Electrostatic Cryogenic Storage Ring 3 electron collision TSR ( keV) 5 e-beams of eV energies, CSR cooler 2 E-cooling Collision resolution

Dmitry Orlov, MPI-K, PESP-08 7 Principle of Electron Cooling TSR e-cooling

Dmitry Orlov, MPI-K, PESP-08 8 Electron-ion collision resolution V║V║ VV Recombination velocity Flattened electron distribution kT ║ ≪ kT  Real resonance position DR rate coefficient v e = v i For high energies E r :

Dmitry Orlov, MPI-K, PESP-08 9 cold electrons 1 HOW TO: cold e-beams 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons 7 Manipulation with eV e-beams at TSR target 4 Why? Electrostatic Cryogenic Storage Ring 5 e-beams of eV energies, CSR cooler 2 E-cooling Collision resolution 3 electron collision TSR ( keV)

Dmitry Orlov, MPI-K, PESP ~ MeV/u Detectors (ions and neutrals) e-target Interaction section 1.5m Electron gun with magnetic expansion  ≈ Adiabatic acceleration Collector TSR dipole Movable ion detector Neutrals detector Ion beam e-e- e-source Electron collision spectroscopy. TSR electron target.

- e A q + Electron capture resonance nℓ (A q + )* + nℓ ( A (q -1)+ )** = + e ( A (q -1)+ )* nℓ Product detection E res Electron collision spectroscopy on multi-charged ions

Core excitation energies ΔE (2s–2p) (2p 3/2 10d 5/2 ) J = 4 (2p 3/2 10d 3/2 ) J = 2 (2p 3/2 10d 3/2 ) J = 3 Electron target PRL, 100, (2008) Photocathode ~ 0.02 meV T || T┴T┴ = 1.0 meV 45 Sc 18+ TSR – 4 MeV/u E EnEn ΔE core 1s 2 2p 3/2 1s 2 2s (1s 2 2p 3/2 nℓ' j ) J E res = (20) eV (±0.2 meV, 4.6 ppm) n = meV (<1% few body QED)

Dmitry Orlov, MPI-K, PESP direct & indirect process Dissociative recombination of HD + : rate spectrum HD + (1sσ, v = 0, J ) + e → HD** (1sσ nℓλ, v'J' ) → H(n) + D(n' ) PRL 100, (2008) Rotational resolution (DR rate) - e + e AB + - B*B* A + (AB + )* + nℓ = AB ** Vibration v=0 -> eV Rotation j=0 -> meV

Dmitry Orlov, MPI-K, PESP Dissociative recombination of HF + : 2D imaging Electron - Target ~ 12 m v beam (~MeV) ~cm detector surface Probability (normalized) d 2D [mm] Rotational resolution Particle distance, mm E KER – E CM -kT, milli-eV PRELIMINARY HF + (X 2 , v=0,J ) + e - HF ** (V 1  + ) H(n=2) + F( 2 P 3/2,1/2 ) HF ** (V 1  + ) v=0 J=0,1,2,…. H(n=2) + F( 2 P 3/2 )

Dmitry Orlov, MPI-K, PESP cold electrons 1 HOW TO: cold e-beams 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons 7 Manipulation with eV e-beams at TSR target 5 e-beams of eV energies, CSR cooler 2 E-cooling Collision resolution 3 electron collision TSR ( keV) 4 Why? Electrostatic Cryogenic Storage Ring

Dmitry Orlov, MPI-K, PESP Electrostatic Cryogenic Storage Ring at 2 K Reaction microscope Ion injection E-target Diagnostic section neutrals CSR Clusters, biomolecules (M up to few 1000 amu) ELECTROSTATIC Storage Rings (no mass limitation) Ring Circumference34m Straight Section Length2.5m Energy Range keV Maximum Beta  h /  v 12/6m Maximum Dispersion2.1m Tunes Q h /Q v 2.59/2.65 XHV (n<10 3 cm -3 ) M= 1-100(1000) amu Electrostatic Storage Ring T=10 (2K) T< 10 K is required after some second storage after production in the ion source Boltzmann distribution (300 TSR)      rotational quantum state vibrational quantum state HD + + e -  H + D

Dmitry Orlov, MPI-K, PESP cold electrons 1 HOW TO: cold e-beams 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons 7 Manipulation with eV e-beams at TSR target 5 e-beams of eV energies, CSR cooler 2 E-cooling Collision resolution 3 electron collision TSR ( keV) 4 Why? Electrostatic Cryogenic Storage Ring

Dmitry Orlov, MPI-K, PESP Features of low-energy e-beams (A) 1. Low voltage Low density High-perveance? Electron density [10 6 cm -3 ] Electron current [mA] Electron energy [eV] Ion energy [keV] Ion mass [amu] Cooling time (cold beam) [s] P=1 μPerv k B T e =1.0 meV Lc=3.3  C =0.028

Dmitry Orlov, MPI-K, PESP Features of low-energy e-beams (B) Photoelectron source Low T ║ 2. Low voltage High kT || 3. High B guid Better for slow electrons Strong ion deflection {avoid beam divergence; suppress TLR; adiabatic transport}

Dmitry Orlov, MPI-K, PESP New Concept for the CSR Electron Cooler/Target toroid merging Dipole merging 1-2 G 30 G We need to cool 20 keV protons B min ≈20 G

Dmitry Orlov, MPI-K, PESP Ion track General view New Concept for the CSR Electron Cooler/Target Electron energy160-1(or below) eV Cooling solenoid length 1065 mm Cooling solenoid radius 130 mm Max. magnetic field150 Gauss Toroid bending radius 200 mm Merging box solenoid Racetrack 330x540 mm, length 350 mm Merging box vertical dipoles Racetrack 268x360 Merging Box toroid merging Dipole merging 1-2 G 30 G We need to cool 20 keV protons B min ≈20 G

22 Adiabatic electron transport Adiabatic criterion Scaling rule for critical energy Finite element analysis with TOSCA code Cross-sections of Heating of paraxial beam - Larmor length Heating start at app. Adiabatic motion Transverse temperature For modeled field geometry Results of e-tracking calculation (TOSCA code) kT ┴ 0

Dmitry Orlov, MPI-K, PESP cold electrons 1 HOW TO: cold e-beams 7 Manipulation with eV e-beams at TSR target 5 e-beams of eV energies, CSR cooler 2 E-cooling Collision resolution 3 electron collision TSR ( keV) 4 Why? Electrostatic Cryogenic Storage Ring 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons

Dmitry Orlov, MPI-K, PESP Low-energy cooling of CF + cooling by 53 eV electrons Themocathode, September 2006, 0eV, s Photocathode, March 2007, 0eV, s CFCF CFCF Electron-target Photocathode T  ~ 1.0 meV I = 0.34 mA n e =3∙10 6 cm -3 Photocathode Themocathode center-of-mass s E cm = 0 eV center-of-mass s E cm = 0 eV

Dmitry Orlov, MPI-K, PESP CF + – cooling time TSR Photocathode, March 2007 Current: 0.34 mA B-expansion: 20 n e =3∙10 6 cm -3 T ┴ =1.0 meV  cool < 2 s Detector (X/Y): σ 0.4 / 0.3 mm Ion beam: X Y ε 2.5∙ ∙10 -3 mm∙mrad σ μm ΔP/P 2.5∙ ∙10 -5  x =1.8 s  y =1.4 s 1 mm

Dmitry Orlov, MPI-K, PESP cold electrons 1 HOW TO: cold e-beams 5 e-beams of eV energies, CSR cooler 2 E-cooling Collision resolution 3 electron collision TSR ( keV) 4 Why? Electrostatic Cryogenic Storage Ring 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons 7 Manipulation with eV e-beams at TSR target

Dmitry Orlov, MPI-K, PESP Manipulation with magnetized eV-electrons W cathode W emission W metal SC E kin V0V0 V W metal SC EFEF EDC, log. scale E kin Cathode Drift tubes TSR target Cathode Collector

Dmitry Orlov, MPI-K, PESP Manipulation with magnetized eV-electrons E kin = q(V 0  V)  (W metal  W emission )  SC 1. Work function difference 2. Space charge at the cathode 3. Space charge SC(I e, V) in the interaction region can be calculated independently. W cathode W emission W metal SC E kin V0V0 V W metal SC EFEF EDC, log. scale E kin Cathode Drift tubes To collector TSR target Drift tubes Cathode Collector E kin ≠ q(V 0  V)

29 Manipulation with magnetized eV-electrons E kin = q(V 0  V)  (W metal  W emission )  SC EFEF W emission V0V0 V W metal SC E kin To collector Drift tubes Cathode Drift tubes Collector V 0 =20 V I e =3µA I e =40 pA (W metal  W emission ) SC E kin A B A B

30 Manipulation with magnetized eV-electrons E kin = q(V 0  V)  (W metal  W emission )  SC EFEF W emission V0V0 V W metal SC E kin To collector Drift tubes Cathode Drift tubes Collector V 0 =20 V I e =4.5 µA I e =40 pA (W metal  W emission ) SC E kin A A E kin, eV I, μA P, μPerv

Dmitry Orlov, MPI-K, PESP HOW TO: cold e-beams 5 e-beams of eV energies, CSR cooler 2 E-cooling Collision resolution 3 electron collision TSR ( keV) 4 Why? Electrostatic Cryogenic Storage Ring 6 Cooling of CF+ ions at TSR by 53 eV photoelectrons 7 Manipulation with eV e-beams at TSR target THANK YOU ! Questions?

Dmitry Orlov, MPI-K, PESP-08 32

Dmitry Orlov, MPI-K, PESP Electron beam formation – adiabaticity adiabaticity: dB/dz, dE/dz small against cyclotron length BgBg Cathode, -100 VExtraction electrode, 0 V φ= 10 0 Cathode Entrance, extraction electrode 80 G 320 G 40 G Typical transition lengths 100 – 200 mm ζ= Higher adiabaticity Low energies

Dmitry Orlov, MPI-K, PESP Acceleration section Collector Toroid TSR dipole Interactionsection electron beam Ion beam Correction dipoles Rails Electron target at TSRPreparationchamber(photocathode)