An Overview of Mechanics Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics – concerned with the geometric aspects of motion 2. Kinetics.

Slides:



Advertisements
Similar presentations
Motion in One Dimension
Advertisements

Kinematics – describes the motion of object without causes that leaded to the motion We are not interested in details of the object (it can be car, person,
POSITION AND DISPLACEMENT A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant,
Kinematics of Particles
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections )
Chapter 2 Motion Along a Straight Line In this chapter we will study kinematics, i.e., how objects move along a straight line. The following parameters.
Kinematics of Particles
Distance The length an object actually travels. How far you go. Scalar Displacement The change in position of an object. Length between start and finish.
Kinematics of Particles Lecture II. Subjects Covered in Kinematics of Particles Rectilinear motion Curvilinear motion Rectangular coords n-t coords Polar.
Chapter 2 Preview Objectives Changes in Velocity
Motion Along a Straight Line
GENERAL & RECTANGULAR COMPONENTS
1D Kinematics. Distance Time (DT) Graph Slope of a DT graph gives speed D This is a graph of an object not moving. No slope = No speed T.
RECTILINEAR KINEMATICS: ERRATIC MOTION Today’s Objectives: Students will be able to: 1.Determine position, velocity, and acceleration of a particle using.
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3) Today’s Objectives: Students will be able to determine position, velocity, and acceleration of a.
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3)
Chapter 2 Preview Objectives One Dimensional Motion Displacement
Describing Motion: Kinematics in One Dimension AP Physics Chapter 2.
Chapter 2 Motion Along a Straight Line. Linear motion In this chapter we will consider moving objects: Along a straight line With every portion of an.
Motion of an object is the continuous change in the position of that object. In this chapter we shall consider the motion of a particle in a straight.
Motion in One Dimension Unit 1. Lesson 1 : Position, Velocity, and Speed Position : location of a particle with respect to a chosen reference point Displacement.
Chapter 2 Table of Contents Section 1 Displacement and Velocity
One Dimensional Motion
Chapter 2 Motion in One Dimension. Dynamics The branch of physics involving the motion of an object and the relationship between that motion and other.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION Today’s Objectives: Students will be able to: 1.Find the kinematic quantities (position, displacement,
Motion in one dimension
MAE 242 Dynamics – Section I Dr. Kostas Sierros. Important information Room: G-19 ESB Phone: ext 2310 HELP:
Displacement Speed and Velocity Acceleration Equations of Kinematics with Constant A Freely Falling Bodies Graphical Analysis of Velocity and Acceleration.
Motion. Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector.
Chapter 2 Kinematics: Description of Motion
1 Chapter 2: Motion along a Straight Line. 2 Displacement, Time, Velocity.
Rigid Body Dynamics (MENG233) Instructor: Dr. Mostafa Ranjbar.
Graphical Look at Motion: displacement – time curve The slope of the curve is the velocity The curved line indicates the velocity is changing Therefore,
Motion. Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector.
Chapter 2 Motion Along a Line. MFMcGraw- PHY 1410Ch_02b-Revised 5/31/20102 Motion Along a Line Position & Displacement Speed & Velocity Acceleration Describing.
Chapter 2 Motion Along a Straight Line. Linear motion In this chapter we will consider moving objects: Along a straight line With every portion of an.
Representing Motion. Motion We are looking to ____________and ____________an object in motion. Three “rules” we will follow: –The motion is in a __________________.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections ) Today’s Objectives: Students will be able to find the kinematic quantities.
Chapter 2 MOTION IN ONE DIMENSION. Particle: A point-like object – that is, an object with mass but having infinitesimal size.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
As a first step in studying classical mechanics, we describe motion in terms of space and time while ignoring the agents that caused that motion. This.
Chapter 2 Kinematics in One Dimension Mechanics – forces & motion Kinematics – describes motion Dynamics – causes of motion (forces)
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
Displacement, Velocity, Constant Acceleration.
Kinematics Kinematics is the branch of physics that describes the motion of points, bodies (objects) and systems of bodies (groups of objects) without.
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS
Mechanics for Engineers: Dynamics, 13th SI Edition R. C. Hibbeler and Kai Beng Yap © Pearson Education South Asia Pte Ltd All rights reserved. An.
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections ) Today’s Objectives: Students will be able to: a)Describe the motion of a particle traveling.
Ying Yi PhD Chapter 2 Motion in One Dimension 1 PHYS HCC.
Chapter 2 Motion in One Dimension. Dynamics Dynamics: branch of physics describing the motion of an object and the relationship between that motion and.
1 Physics Chapter 2 Motion in One Dimension Topics:Displacement & Velocity Acceleration Falling Objects.
Describing Motion: Kinematics in One Dimension Chapter 2.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Engineering Dynamics Module code NS 111 Engr. Dr Imran Shafi
Motion in One Dimension
Introduction & Rectilinear Kinematics:
– KINEMATIC OF RECTILINEAR MOTION
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
One Dimensional Motion
Chapter 12 : Kinematics Of A Particle
Kinematics in One Dimension
Presentation transcript:

An Overview of Mechanics Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics – concerned with the geometric aspects of motion 2. Kinetics - concerned with the forces causing the motion Mechanics: The study of how bodies react to forces acting on them.

RECTILINEAR KINEMATICS: CONTINIOUS MOTION (Section 12.2) A particle travels along a straight-line path defined by the coordinate axis s. The total distance traveled by the particle, s T, is a positive scalar that represents the total length of the path over which the particle travels. The position of the particle at any instant, relative to the origin, O, is defined by the position vector r, or the scalar s. Scalar s can be positive or negative. Typical units for r and s are meters (m) or feet (ft). The displacement of the particle is defined as its change in position. Vector form:  r = r’ - rScalar form:  s = s’ - s

VELOCITY Velocity is a measure of the rate of change in the position of a particle. It is a vector quantity (it has both magnitude and direction). The magnitude of the velocity is called speed, with units of m/s or ft/s. The average velocity of a particle during a time interval  t is v avg =  r /  t The instantaneous velocity is the time-derivative of position. v = dr / dt Speed is the magnitude of velocity: v = ds / dt Average speed is the total distance traveled divided by elapsed time: (v sp ) avg = s T /  t

ACCELERATION Acceleration is the rate of change in the velocity of a particle. It is a vector quantity. Typical units are m/s 2 or ft/s 2. As the book indicates, the derivative equations for velocity and acceleration can be manipulated to get a ds = v dv The instantaneous acceleration is the time derivative of velocity. Vector form: a = dv / dt Scalar form: a = dv / dt = d 2 s / dt 2 Acceleration can be positive (speed increasing) or negative (speed decreasing).

SUMMARY OF KINEMATIC RELATIONS: RECTILINEAR MOTION Differentiate position to get velocity and acceleration. v = ds/dt ; a = dv/dt or a = v dv/ds Integrate acceleration for velocity and position. Note that s o and v o represent the initial position and velocity of the particle at t = 0. Velocity:   t o v v o dt a dv   s s v v oo ds a dvvor   t o s s o dtvds Position:

CONSTANT ACCELERATION The three kinematic equations can be integrated for the special case when acceleration is constant (a = a c ) to obtain very useful equations. A common example of constant acceleration is gravity; i.e., a body freely falling toward earth. In this case, a c = g = 9.81 m/s 2 = 32.2 ft/s 2 downward. These equations are: ta v v co  yields   t o c v v dtadv o 2 coo s t (1/2) a t v s s  yields   t os dtvds o )s - (s2a )(v v oc 2 o 2  yields   s s c v v oo ds a dvv

EXAMPLE Plan:Establish the positive coordinate, s, in the direction the particle is traveling. Since the velocity is given as a function of time, take a derivative of it to calculate the acceleration. Conversely, integrate the velocity function to calculate the position. Given: A particle travels along a straight line to the right with a velocity of v = ( 4 t – 3 t 2 ) m/s where t is in seconds. Also, s = 0 when t = 0. Find: The position and acceleration of the particle when t = 4 s.

EXAMPLE (continued) Solution: 1) Take a derivative of the velocity to determine the acceleration. a = dv / dt = d(4 t – 3 t 2 ) / dt =4 – 6 t => a = – 20 m/s 2 (or in the  direction) when t = 4 s 2)Calculate the distance traveled in 4s by integrating the velocity using s o = 0: v = ds / dt => ds = v dt => => s – s o = 2 t 2 – t 3 => s – 0 = 2(4) 2 – (4) 3 => s = – 32 m ( or  )   t o s s (4 t – 3 t 2 ) dt ds o

GROUP PROBLEM SOLVING Given:Ball A is released from rest at a height of 40 ft at the same time that ball B is thrown upward, 5 ft from the ground. The balls pass one another at a height of 20 ft. Find:The speed at which ball B was thrown upward. Plan:Both balls experience a constant downward acceleration of 32.2 ft/s 2 due to gravity. Apply the formulas for constant acceleration, with a c = ft/s 2.

GROUP PROBLEM SOLVING (continued) Solution: 1)First consider ball A. With the origin defined at the ground, ball A is released from rest ((v A ) o = 0) at a height of 40 ft ((s A ) o = 40 ft). Calculate the time required for ball A to drop to 20 ft (s A = 20 ft) using a position equation. s A = (s A ) o + (v A ) o t + (1/2) a c t 2 So, 20 ft = 40 ft + (0)(t) + (1/2)(-32.2)(t 2 ) => t = s

GROUP PROBLEM SOLVING (continued) Solution: 2)Now consider ball B. It is throw upward from a height of 5 ft ((s B ) o = 5 ft). It must reach a height of 20 ft (s B = 20 ft) at the same time ball A reaches this height (t = s). Apply the position equation again to ball B using t = 1.115s. s B = (s B ) o + (v B ) o t + (1/2) a c t 2 So, 20 ft = 5 + (v B ) o (1.115) + (1/2)(-32.2)(1.115) 2 => (v B ) o = 31.4 ft/s