A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
Atsuhiko Ochi Kobe University 4/10/ th RD51 collaboration meeting.
Micro MEsh GASeous Detectors (MicroMegas)
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Proposal and current status of developments 4 th RD51 meeting (WG1) 23 November 2009 Atsuhiko Ochi ( Kobe University )
Prototype TPC Tests C. Lu 12/9/98 V = 0. Gas gain test for the low pressure chamber The chamber is constructed with the following parameters: D anode.
Proportional Counters
Status of simulation studies of IBF for GEMs
Measurement of gas gain fluctuations M. Chefdeville, LAPP, Annecy TPC Jamboree, Orsay, 12/05/2009.
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
A. Breskin RD51 Amsterdam 4/08 ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
A. Lyashenko INSTR08 – BINP – Feb ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
D. Attié CEA Saclay/Irfu RD51 – ALICE Workshop June 18 th, 2014 ILC-TPC Micromegas: Ion Backflow Measurements.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
Ionization Detectors Basic operation
NEWAGE Hironobu Nishimura ( Kyoto University) K. Miuchi T. Tanimori, H. Kubo, S. Kabuki, A. Takada, K. Hattori, K. Ueno, S. Kurosawa, T.Ida, S.Iwaki A.
The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,
Timepix at NIKHEFMedipix meeting, CERN – Some recents results at NIKHEF M. Chefdeville, E. Bilevych, H. van de Graaf, J. Timmermans D. Attié,
2007 Oct 24 Simulation Study of GEM Gating for LC TPC Akimasa Ishikawa (Saga University) LCTPC Asia Group Saga : A. Aoza, T. Higashi, A. Sugiyama, H. Tsuji.
5 th RD51 meeting (WG1) 25 May 2009 Atsuhiko Ochi ( Kobe University )
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
Atsuhiko Ochi Kobe University
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 神戸大学 越智 敦彦、桂華.
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 4. Summary 神戸大学.
1/18 01/26/2007MPGD Workshop in Saga (Yorito Yamaguchi, CNS, Univ. of Tokyo) 東大 CNS における GEM の基本動 作特性の研究 Measurement of basic properties of GEM at CNS,
Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.
Development of a Gamma Camera Based on an 88 Array of LaBr3(Ce) Scintillator Pixels Coupled to a 64-channel Multi-anode PMT Hidetoshi Kubo, K.Hattori,
Atsushi Aoza ( saga University ) A Simulation Study of GEM gating at ILC-TPC A.Ishikawa, A.Sugiyama, H.Fujishima, K.Kadomatsu(Saga U.) K.Fujii,M.Kobayashi,
Taku Gunji Center for Nuclear Study The University of Tokyo
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
1 Update on Silicon Pixel Readout for a TPC at NIKHEF LCWS08 - Chicago 19 Nov 2008 Jan Timmermans NIKHEF.
Performance Studies of BULK Micromegas with Different Amplification Gaps Purba Bhattacharya 1, Sudeb Bhattacharya 1, Nayana Majumdar 1, Supratik Mukhopadhyay.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
Development of an Electron-Tracking Compton Camera using CF 4 gas at high pressure for improved detection efficiency Michiaki Takahashi N. Higashi, S.
December 10, The Parallel Plate Chamber CERN Presentation Wout Kremers Detector R&D NIKHEF.
Xe-based detectors: recent work at Coimbra C.A.N.Conde, A.D. Stauffer, T.H.V.T.Dias, F.P.Santos, F.I.G.M.Borges, L.M.N.Távora, R.M.C. da Silva, J.Barata,
Development of an Electron-Tracking Compton Camera with a Gaseous TPC and a Scintillation Camera for a Balloon-borne experiment (SMILE) Kazuki Ueno, Toru.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
Electron Transmission Measurement of GEM Gate Hirotoshi KUROIWA (Saga Univ.) Collaboration with KEK, TUAT, Kogakuin U, Kinki U, Saga U Introduction Motivation.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
Single GEM Measurement Matteo Alfonsi,Gabriele Croci and Bat-El Pinchasik June 25 th 2008 GDD Meeting 1.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Development of μ-PIC with resistive electrodes using sputtered carbon Kobe Univ.,Tokyo ICEPP A F.Yamane, A.Ochi, Y.Homma S.Yamauchi, N.Nagasaka, H.Hasegawa,
Gas Electron Multiplier
A. Takada (Kyoto University)  Our motivation   -PIC and MeV gamma-ray telescope   -PIC applications  New type  -PIC.
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
A Micromegas TPC for the ILC. 2 Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow.
マイクロメッシュを用いた 三次元電場構造型μ-PICの開発
Max Chefdeville, NIKHEF, Amsterdam
Micromegas TPC and wire TPC First measurements in a magnetic field
Part-V Micropattern gaseous detectors
Single GEM Measurement
MPGD 2015 Concise Summary Amos Breskin.
Updates on the Micromegas + GEM prototype
WG1 Task2 New structures, new designs, new geometries
THGEM: Introduction to discussion on UV-detector parameters for RICH
Ionization detectors ∆
A.Takada, A.Takeda, T.Tanimori
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
A DLC μRWELL with 2-D Readout
Presentation transcript:

A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September 2008

Introduction PSD8 Glasgow1st September 2008  Introduction to  -PIC  Design of new M 3 -PIC  Advantages using micro mesh

Introduction to  -PIC M 3 -PIC is based on  -PIC  -PIC : micro pixel gas chamber Large area with PCB tech. pitch :400μm high gas gain small discharge damage 4% (with capillary) Maximum gain ~35% uniformity ( σ ) 400μm (300μm possible) 200μm Pitch 30×30cm 2 10×10cm 2 Area >30 daysLong time Stable Gain  -PIC MSGC Invented by A.Ochi and T.Tanimori ( NIMA 471 (2001) 264) Application: X-ray imaging, Gamma camera, Medical RI tracing, etc. PSD8 Glasgow1st September 2008

Gaseous TPC with micro-electrodes Scintillation Camera Scintillation Camera Recoil Electron : 3D Sequential Track ->Direction, Energy Less cost than semiconductor Scattered Gamma-ray : Energy, Direction Tanimori, et al, 2004 α Introduction to  -PIC (cont’d)  Applications --- Micro TPC  Gamma ray camera (ETCC: Electron-Tracking Compton Camera) 3 D Track X, Y from m -PIC + Z from timing PSD8 Glasgow1st September 2008

Design of M 3 -PIC  Micro pixel chamber (  -PIC) +  With micro mesh  Higher gain in stable operation (~5x10 4 )  Low ion backflow (<1%) 400  m 100  m 70m70m 230  m 165  m Anode Cathode Support wire Micro Mesh 1cm Drift/detection area (Filled by gas) Drift plane PSD8 Glasgow1st September 2008

 Higher gas gain will be attained safely ( )  High electric field is formed larger area around the anode  Without increase of e-field near cathode edge  Electron emission from cathode edge is reduced  Streamer from anode is quenched  Reduction of positive ion backflow   -PIC: ~30%  M 3 -PIC: < 1% Advantages using micro mesh Anode Substrate Mesh Cathode Anode Substrate Cathode E-field strength on  -PIC E-field strength on   -PIC

Setup and operation tests PSD8 Glasgow1st September 2008  Setup  Gas gain measurements  Ion backflow measurements

0.5mm Micro scope pictures for same place (different focus point) Micro mesh mounted on  -PIC by hand. Size of  -PIC = 3cm x 3cm. Setup 1st September 2008PSD8 Glasgow

Gas gain measurements  Gain dependency on  Anode voltage (=Va)  Mesh voltage (=Vm)  Drift field (=(Vd-Vm)/1cm) 165  m 100  m Drift Plane Cathode Anode Signal Vd Va Mesh Vm PSD8 Glasgow1st September cm

Gain dependence of drift field  Higher drift field  Lower electron collection efficiency on anode  Gain decrease  Energy resolution worse  No escape peak found in 2kV/cm  Maximum gain  100V/cm < E_d < 500V/cm  E_d below 100V/cm  Ion-electron recombination E_drift = 300V/cm E_drift = 1kV/cm E_drift = 2kV/cm

Electron drifts toward anode (simulation)  Electrons are absorbed in the mesh or cathodes when electric field in drift region is higer. E_drift = 300V/cmE_drift = 1kV/cm anode cathode mesh

Gain dependence on Vm and Va  E_drift = 300V/cm  Maximum gain : 5 x 10 4 Gap of mesh: 165  m Mesh thickness: 5  m Gas: Ar:C2H6 = 50:50 PSD8 Glasgow1st September 2008

Ion backflow (IBF)  Ion backflow: The fraction of total avalanche-generated ions reaching to drift region.  Serious problem for TPC readout  -PIC (no mesh) M 3 -PIC Low IBF Simulation PSD8 Glasgow1st September 2008 Ion drift lines from anodes

Setup for ion backflow measurements  Pico-ammeter is inserted in Drift and Anode line  IBF = ( I_drift/I_anode)  Wireless data taking for keeping insulation 100  m Drift Plane Cathode Anode Vd (-100V~-1kV) Va (~500V) Mesh (5  m or 20  m) Vm (-150V~350V) A A Pico ammeter Data collection by wireless  (Sr 90 ) PSD8 Glasgow1st September 2008

IBF of M 3 -PIC  IBF dependence on drift field and mesh thickness  IBF dependence on mesh voltage  Gas: Ar 90% + C 2 H 6 10%  Gain = 10 4 for these tests  Liner dependence of IBF on drift field  Small IBF for thicker mesh  Optimum point of mesh voltage Minimum IBF = 0.5% PSD8 Glasgow1st September 2008 Vm = -250V E_drift = 100V/cm Mesh 20 micron

Summary  New MPGD design: M 3 -PIC was developed  Combined with  -PIC and micro mesh  Ideal electrical fields are formed around anodes for gas avalanche  Prototype was manufactured and tested  Maximum gain of 5 x 10 4 has been attained at present  A few time larger than the gain of simple  -PIC  Minimum IBF of 0.5% has been attained at present Future Prospects  Optimization of structure parameters (mesh gap, mesh thickness … etc.) and operation parameters (HV, gas etc.)  Combination with existence large area  -PIC  Testing imaging and tracking capabilities  Long term operation test PSD8 Glasgow1st September 2008