AGU Highlights Vijay Natraj. CO 2 Retrieval Simulation from GOSAT Thermal IR Spectra 15 um CO 2 band; 0.2 cm -1 res, ~ 300 S/N 110 layers for forward.

Slides:



Advertisements
Similar presentations
Regional flux estimates of CO2 and CH4 inferred from GOSAT XCH4:XCO2 ratios Liang Feng Annemarie Fraser Paul Palmer University of Edinburgh Hartmut Bösch.
Advertisements

A Methodology for Simultaneous Retrieval of Ice and Liquid Water Cloud Properties O. Sourdeval 1, L. C.-Labonnote 2, A. J. Baran 3, G. Brogniez 2 1 – Institute.
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
METO621 Lesson 18. Thermal Emission in the Atmosphere – Treatment of clouds Scattering by cloud particles is usually ignored in the longwave spectrum.
3D Radiative Transfer in Cloudy Atmospheres: Diffusion Approximation and Monte Carlo Simulation for Thermal Emission K. N. Liou, Y. Chen, and Y. Gu Department.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
Inter-comparison of retrieved CO 2 from TCCON, combining TCCON and TES to the overpass flight data Le Kuai 1, John Worden 1, Susan Kulawik 1, Kevin Bowman.
1 Centrum Badań Kosmicznych PAN, ul. Bartycka 18A, Warsaw, Poland Vertical temperature profiles in the Venus.
The Orbiting Carbon Observatory Mission: Effects of Polarization on Retrievals Vijay Natraj Advisor: Yuk Yung Collaborators: Robert Spurr (RT Solutions,
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
Atmospheric Emission.
Page 1 1 of 19, OCO STM 2006 OCO Science Team Meeting March 22, 2006 Vijay Natraj (Caltech), Hartmut Bösch (JPL), Yuk Yung (Caltech) A Two Orders of Scattering.
Page 1 1 of 100, L2 Peer Review, 3/24/2006 Level 2 Algorithm Peer Review Polarization Vijay Natraj.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
Satellite basics Estelle de Coning South African Weather Service
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Applications and Limitations of Satellite Data Professor Ming-Dah Chou January 3, 2005 Department of Atmospheric Sciences National Taiwan University.
Diagnosing Climate Change from Satellite Sounding Measurements – From Filter Radiometers to Spectrometers William L. Smith Sr 1,2., Elisabeth Weisz 1,
Determination of the optical thickness and effective radius from reflected solar radiation measurements David Painemal MPO531.
1 Satellite data assimilation for air quality forecast 10/10/2006.
RGB Airmass and Dust products NASA SPoRT CIRA. RGB Air Mass RED (6.2 – 7.3) –vertical moisture distribution GREEN ( ) – tropopause height based.
Development and evaluation of Passive Microwave SWE retrieval equations for mountainous area Naoki Mizukami.
New Products from combined MODIS/AIRS Jun Li, Chian-Yi Liu, Allen Huang, Xuebao Wu, and Liam Gumley Cooperative Institute for Meteorological Satellite.
S5P Ozone Profile (including Troposphere) verification: RAL Algorithm R.Siddans, G.Miles, B.Latter S5P Verification Workshop, MPIC, Mainz th May.
CO 2 Diurnal Profiling Using Simulated Multispectral Geostationary Measurements Vijay Natraj, Damien Lafont, John Worden, Annmarie Eldering Jet Propulsion.
An evaluation method of the retrieved physical quantity deriving from the satellite remote sensing using analysis of variance in experimental design Mitsuhiro.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
OSTST - March Hobart 1 Impacts of atmospheric attenuations on AltiKa expected performances J.D. Desjonquères (1), N. Steunou (1) A. Quesney (2)
Combining Simultaneously Measured UV and IR Radiances from OMI and TES to Improve Tropospheric Ozone Profile Retrievals Dejian Fu 1, John Worden 1, Susan.
A processing package for atmospheric correction of compact airborne spectrographic imager (casi) imagery over water including a novel sunglint correction.
Using GLAS to Characterize Errors in Passive Satellite Cloud Climatologies Michael J Pavolonis* and Andrew K Heidinger# *CIMSS/SSEC/UW-Madison #NOAA/NESDIS.
Methane and carbon dioxide total columns over cloudy oceans measured by shortwave infrared satellite sounders D. Schepers, I. Aben, A. Butz, O.P. Hasekamp,
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
MAG: F.M. Breon, H. Dolman, G. Ehret, P. Flamant, N. Gruber, S. Houweling, M. Scholze, R.T. Menzies and P. Ingmann (ESA) A-Scope Measuring CO 2 Using a.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Simulation Experiments for TEMPO Air Quality Objectives Peter Zoogman, Daniel Jacob, Kelly Chance, Xiong Liu, Arlene Fiore, Meiyun Lin, Katie Travis, Annmarie.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Initial Analysis of the Pixel-Level Uncertainties in Global MODIS Cloud Optical Thickness and Effective Particle Size Retrievals Steven Platnick 1, Robert.
Cheas 2006 Meeting Marek Uliasz: Estimation of regional fluxes of CO 2 … Cheas 2006 Meeting Marek Uliasz: Estimation of regional fluxes of CO 2 …
The Orbiting Carbon Observatory (OCO) Mission: Retrieval Characterisation and Error Analysis H. Bösch 1, B. Connor 2, B. Sen 1, G. C. Toon 1 1 Jet Propulsion.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
1 Information Content Tristan L’Ecuyer. 2 Degrees of Freedom Using the expression for the state vector that minimizes the cost function it is relatively.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
March 21, ‘06 comp. May 5, ‘06 comp Summary ~4% swath angle dependent difference Up to 9% difference over clouds Differences correlate with snow/ice.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
MODIS, AIRS, and Midlevel Cloud Phase Shaima Nasiri CIMSS/SSEC, UW-Madison Brian Kahn Jet Propulsion Laboratory MURI Hyperspectral Workshop 7-9 June, 2005.
Global Characterization of X CO2 as Observed by the OCO (Orbiting Carbon Observatory) Instrument H. Boesch 1, B. Connor 2, B. Sen 1,3, G. C. Toon 1, C.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
1 Synthetic Hyperspectral Radiances for Retrieval Algorithm Development J. E. Davies, J. A. Otkin, E. R. Olson, X. Wang, H-L. Huang, Ping Yang # and Jianguo.
AGU 2008 Highlight Le Kuai Lunch seminar 12/30/2008.
1 Deriving cloud parameters for O 3 profile retrieval Zhaonan Cai 1, Xiong Liu 1, Kai Yang 2, Kelly Chance 1 1 SAO 2 UMD 4 th TEMPO Science Team Meeting,
Carbon monoxide from shortwave infrared measurements of TROPOMI: Algorithm, Product and Plans Jochen Landgraf, Ilse Aben, Otto Hasekamp, Tobias Borsdorff,
SIMULATED OBSERVATION OF TROPOSPHERIC OZONE AND CO WITH TES
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
The SST CCI: Scientific Approaches
Computing cloudy radiances
GOES -12 Imager April 4, 2002 GOES-12 Imager - pre-launch info - radiances - products Timothy J. Schmit et al.
Satellite data assimilation for air quality forecast
Band / Target Center Wavelength (m)
FIRE IMPACT ON SURFACE ALBEDO
Presentation transcript:

AGU Highlights Vijay Natraj

CO 2 Retrieval Simulation from GOSAT Thermal IR Spectra 15 um CO 2 band; 0.2 cm -1 res, ~ 300 S/N 110 layers for forward model, reduced grid for retrievals MAP retrieval If T known perfectly, excellent agreement above 700 mbar If T had random errors, results with ~ 1.5% precision if channels selected on the basis of CO 2 IC or CO 2 IC – T IC as appropriate

Impact of Aerosols on CO 2 Retrievals using NIR GOSAT Data 1.6 um CO 2 band Large CO 2 errors for aerosols at high latitudes even for low aerosol od (>~ 0.05) CO 2 errors also large when surface albedo is large Simultaneous retrieval of aerosol, CO 2 and surface albedo reduces bias

Cirrus Cloud Characteristics from GLAS Observations Geoscience Laser Altimeter System Cirrus clouds located at ~ 13 km in tropics and 8 km in mid-latitudes, with ~ 2 km thickness everywhere Optical thickness less than 0.2 in UT and approx. constant at 0.25 in mid and lower trop in the tropics Mean value of optical thickness increases with latitude In the tropics, 56% of cirrus cloud events occur above other cloud layers!

Ozone Profile Retrieval from OMI Data um 18-layer atmosphere; 6-8 km vertical res DOAS technique with optimal estimation 6-stream LIDORT+polarization correction LUT+RRS Results good for levels <~ 50 mbar

Accounting for Non-uniform Spatial IC of Remotely Sensed Data Spatial characteristics of observations different from those of assimilation model Typically use point-based interpolation techniques such as bilinear interpolation Such techniques ignore footprint characteristics of observations; hence uncertainty inherent in resampling Geostatistical Inverse Modeling (GIM) incorporates spatial scale of observations and models uncertainty inherent to making estimates at different spatial scales Essentially, GIM is a bayesian approach similar to traditional inverse modeling Treats each pixel as an non-uniform integration of footprint depending on sensor’s point-spread function and viewing geometry, and not as a point or rectangle with uniform information Inverse modeling used to estimate value for center pixel using information from both center and surrounding measurements