5: DataLink Layer5-1 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r Multi-tier design provides.

Slides:



Advertisements
Similar presentations
Communication Networks Recitation 3 Bridges & Spanning trees.
Advertisements

University of Calgary – CPSC 441.  We need to break down big networks to sub-LANs  Limited amount of supportable traffic: on single LAN, all stations.
Ethernet “dominant” LAN technology: cheap $20 for 100Mbs!
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
1 Ethernet EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement: Some slides taken.
CPSC 441 TUTORIAL TA: FANG WANG HUBS, SWITCHES AND BRIDGES Parts of the slides contents are courtesy of the following people: Jim Kurose, Keith Ross:
1 Version 3 Module 8 Ethernet Switching. 2 Version 3 Ethernet Switching Ethernet is a shared media –One node can transmit data at a time More nodes increases.
5/31/05CS118/Spring051 twisted pair hub 10BaseT, 100BaseT, hub r T= Twisted pair (copper wire) r Nodes connected to a hub, 100m max distance r Hub: physical.
CCNA 3 v3.1 Module 4.
1 Computer Networks Internetworking Devices. 2 Repeaters Hubs Bridges –Learning algorithms –Problem of closed loops Switches Routers.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
Local Area Network Lesson 7 NETS2150/2850.
5: DataLink Layer5-1 Link Layer r Link layer services r Error detection and correction r Multiple access protocols r 5.4 Link-Layer Addressing r 5.5 Ethernet.
1 Last class r Random Access Protocols m Slotted Aloha m Aloha m CSMA/CD m “Taking Turns” Protocols r Link-Layer Addressing Today r Ethernet, Hubs and.
5: DataLink Layer – Ethernet, Hubs and Switches.
1 Interconnection ECS 152A. 2 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual.
1 Interconnecting LAN segments Repeaters Hubs Bridges Switches.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J.
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
1 ECE453 – Introduction to Computer Networks Lecture 8 – Multiple Access Control (II)
DataLink Layer1 Ethernet Technologies: 10Base2 10: 10Mbps; 2: 200 meters (actual is 185m) max distance between any two nodes without repeaters thin coaxial.
Connecting LANs, Backbone Networks, and Virtual LANs
Semester 1 Module 8 Ethernet Switching Andres, Wen-Yuan Liao Department of Computer Science and Engineering De Lin Institute of Technology
Hubs, Bridges, and Switches (oh my) r Used for extending LANs in terms of geographical coverage, number of nodes, administration capabilities, etc. r Differ.
Lecture 17 Ethernet r Widely deployed because: m First LAN technology m Simpler and less expensive than token LANs and ATM m Kept up with the speed race:
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Brierley 1 Module 4 Module 4 Introduction to LAN Switching.
Computer Networking Bridges/Switches, , PPP.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r multiple access protocols and LANs r link layer addressing, ARP r specific link layer.
Link Layer: MAC Ilam University Dr. Mozafar Bag-Mohammadi.
Review: –Ethernet What is the MAC protocol in Ethernet? –CSMA/CD –Binary exponential backoff Is there any relationship between the minimum frame size and.
5: DataLink Layer 5a-1 18: Ethernet, Hubs, Bridges, Switches Last Modified: 10/27/2015 1:29:46 PM.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Cisco 3 – Switching Concepts Perrine. J Page 16/1/2016 Module 4 The use of bridges and switches for segmentation results in ____? 1.Multiple broadcast.
Networks and Protocols CE Week 2a. Network hardware.
5: DataLink Layer5c-1 Today r Assign Homework m Ch5 #1,4,5,7,11,12 Due Wednesday October 22 m Ch5 #13-16,18,20 Due Monday, October 27 r Project #2 due.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Connecting Devices CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL Department of Electronics and.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Link Layer MAC Dr. Mozafar Bag-Mohammadi University of Ilam.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
CISCO NETWORKING ACADEMY Chabot College ELEC Ethernet Switches.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
5: DataLink Layer 5a-1 Bridges and spanning tree protocol Reference: Mainly Peterson-Davie.
CCNA3 Module 4 Brierley Module 4. CCNA3 Module 4 Brierley Topics LAN congestion and its effect on network performance Advantages of LAN segmentation in.
4: DataLink Layer1 Hubs r Physical Layer devices: essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces.
Computer Communication and Networking Lecture # 4 by Zainab Malik 1.
5: DataLink Layer5-1 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame.
5: DataLink Layer5-1 Link-layer switches. 5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links.
Lec # 25 Computer Network Muhammad Waseem Iqbal. Learn about the Internetworking Devices – Repeaters – Hubs – Switches – Bridges – Routers.
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
Chapter 3 Part 1 Switching and Bridging
Link Layer 5.1 Introduction and services
MAC Addresses and ARP 32-bit IP address:
Chapter 4 Data Link Layer Switching
Hubs Hubs are essentially physical-layer repeaters:
ARP: Address Resolution Protocol
Chapter 3 Part 1 Switching and Bridging
Mac Addressing, Ethernet, and Interconnections
Hubs Hubs are essentially physical-layer repeaters:
EEC-484/584 Computer Networks
Chapter 6 The Link Layer and LANs
EEC-484/584 Computer Networks
18: Ethernet, Hubs, Bridges, Switches
Chapter 5 Data Link Layer – Hub, Switch
Connectors, Repeaters, Hubs, Bridges, Switches, Routers, NIC’s
Link Layer 5.1 Introduction and services
Presentation transcript:

5: DataLink Layer5-1 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r Multi-tier design provides a degree of graceful degradation. r Can’t interconnect 10BaseT & 100BaseT m Hub is essentially a repeater that does not buffer frames. hub

5: DataLink Layer5-2 Collision Domain r LAN Segment m Between the hub and the hosts that connect to the hub m In a single segment, the maximum node and its hub is 100 meters. r All of the LAN segment belong to the same collision domain. m Whenever two or more nodes on the LAN segments transmit at the same time, there will be a collision. m All of the transmitting nodes will enter exponential backoff. r Individual segment collision domains become one large collision domain m Bandwidth can not be aggregated.

5: DataLink Layer5-3 Switch r Link layer device m stores and forwards Ethernet frames m examines frame header and forwards frame based on MAC dest address m when frame is to be forwarded on segment, uses CSMA/CD to access segment r transparent m hosts are unaware of presence of switches r plug-and-play, self-learning m switches do not need to be configured

5: DataLink Layer5-4 Forwarding How do determine onto which LAN segment to forward frame? Looks like a routing problem... hub switch 1 2 3

5: DataLink Layer5-5 Self learning r A switch has a switch table 記載 host 的來源 interface, 下次有人要丟給此 host 就不用 broadcast! r entry in switch table: m (MAC Address, Interface, Time Stamp) m stale entries in table dropped (TTL can be 60 min) r switch learns which hosts can be reached through which interfaces m when frame received, switch “learns” location of sender: incoming LAN segment m records sender/location pair in switch table

5: DataLink Layer5-6 Filtering/Forwarding When switch receives a frame: index switch table using MAC dest address if entry found for destination then{ if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated } else flood

5: DataLink Layer5-7 Switch: traffic isolation r switch installation breaks subnet into LAN segments r switch filters packets: m same-LAN-segment frames not usually forwarded onto other LAN segments (self-learning) m segments become separate collision domains hub switch collision domain

5: DataLink Layer5-8 Switches: dedicated access ( 如圖 ) r Switch with many interfaces r Hosts have direct connection to switch r No collisions; full duplex Switching: A-to-A’ and B-to-B’ simultaneously, no collisions switch A A’ B B’ C C’

5: DataLink Layer5-9 More on Switches r cut-through switching: frame forwarded from input to output port without first collecting entire frame m slight reduction in latency r combinations of shared/dedicated, 10/100/1000 Mbps interfaces

5: DataLink Layer5-10 Institutional network hub switch to external network router IP subnet mail server web server

5: DataLink Layer5-11 Switches(bridge) vs. Routers r both store-and-forward devices m routers: network layer devices (examine network layer headers) m switches are link layer devices r routers maintain routing tables, implement routing algorithms r switches maintain switch tables, implement filtering, learning algorithms

5: DataLink Layer5-12 Summary comparison

5: DataLink Layer5-13 Chapter 5: Summary r principles behind data link layer services: m error detection, correction m sharing a broadcast channel: multiple access m link layer addressing r instantiation and implementation of various link layer technologies m Ethernet m switched LANS