KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.

Slides:



Advertisements
Similar presentations
First results from the ATLAS experiment at the LHC
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Consorzio COMETA - Progetto PI2S2 UNIONE EUROPEA NEMO Monte Carlo Application on the Grid R. Calcagno for the NEMO Collaboration.
Neutrino astronomy with Antares Aart Heijboer. Research to fundamental building blocks of matter Research on the Universe using those particles.
Jan 2009 U. Katz: Astroparticle Physics 1 What is KM3NeT – the Vision  Future cubic-kilometre sized neutrino telescope in the Mediterranean Sea  Exceeds.
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
A. BELIAS, NESTOR Institute, Pylos, Greece TeVPA 2009, July 13-17, SLAC1 KM3NeT, a deep sea neutrino telescope in the Mediterranean Sea KM3NeT objectives.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
LHC ~E -2.7 ~E -3 ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser 2005 Nature accelerates particles 10 7 times the energy of LHC! where?how?
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
S. E. Tzamarias The project is co-funded by the European Social Fund & National Resources EPEAEK-II (PYTHAGORAS) KM3Net Kick-off Meeting, Erlangen-Nuremberg,
The ANTARES experiment is currently the largest underwater neutrino telescope and is taking high quality data since Sea water is used as the detection.
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
Apostolos Tsirigotis Simulation Studies of km3 Architectures KM3NeT Collaboration Meeting April 2007, Pylos, Greece The project is co-funded by the.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
Cosmic Rays: Ever Present and Useful Anthony Gillespie Denbigh High School Mentor: Dr. Douglas Higinbotham Cosmic Rays Using the Cosmic Rays Current Research.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
WP2 meeting, Oct 2006, CPPM Claudine Colnard - NIKHEF Claudine Colnard, Ronald Bruijn, Eleonora Presani, Siemen Meester, Paul Kooijman (presented by Maarten.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
A sensor architecture for neutrino telescopes on behalf of the KM3NeT consortium Els de Wolf Thank you, Claudio!
Antares Neutrino Telescope Jean-Pierre Ernenwein Université de Haute Alsace (On behalf of the ANTARES collaboration) Rencontres de Moriond, 13/03/2005.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
CEA DSM Irfu Reconstruction and analysis of ANTARES 5 line data Niccolò Cottini on behalf of the ANTARES Collaboration XX th Rencontres de Blois 21 / 05.
The ANTARES detector: background sources and effects on detector performance S. Escoffier CNRS Centre de Physique des Particules de Marseille on behalf.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Antares Slow Control Status 2007 International Conference on Accelerator and Large Experimental Physics Control Systems - Knoxville, Tennessee - October.
The ANTARES Project Sino-French workshop on the Dark Universe Stephanie Escoffier Centre de Physique des Particules de Marseille On behalf of the ANTARES.
Time over Threshold electronics for an underwater neutrino telescope G. Bourlis, A.G.Tsirigotis, S.E.Tzamarias Physics Laboratory, School of Science and.
1 João Espadanal, Patricia Gonçalves, Mário Pimenta Santiago de Compostela 3 rd IDPASC school Auger LIP Group 3D simulation Of Extensive Air.
Disk Towards a conceptual design M. de Jong  Introduction  Design considerations  Design concepts  Summary.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Sebastian Kuch, Rezo Shanidze Preliminary Studies of the KM3NeT Physics Sensitivity KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
Neutrinos and the sea Els de Wolf NIKHEF Ilias Meeting, Prague, February 8 th 2005.
Status of Sirene Maarten de Jong. What?  Sirene is yet another program that simulates the detector response to muons and showers  It uses a general.
Geant4 Simulation of the Pierre Auger Fluorescence Detector
Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15 th, 2008 GDR Neutrino, CPPM, Marseille.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Antares status and plans  Reminder  Project status  Plans M. de Jong.
Isabella Amore VLV T08, Toulon, France April 2008 International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea Results.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Neutrino telescopes: ANTARES and KM3NeT Maarten de Jong Programme: Group composition (current): 6+2 staff, 4 post-doc, 4 PhD. Vidi 1, Veni 1+1.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Antares/KM3NeT M. de Jong. Antares  2000NL joined collaboration (3.3 M€)  2006 ‒ 2008construction  2006 ‒ todaydata taking 24h/day  2012MoU signed.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
Status of Sirene Maarten de Jong. What?  Sirene is a program that simulates the detector response to muons and showers  It is based on the formalism.
Status Antares & KM3NeT SAC 2010 Maarten de Jong.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
ANTARES Lessons learned from its completion
Deep-sea neutrino telescopes
White Rabbit in KM3NeT Mieke Bouwhuis NIKHEF 9th White Rabbit Workshop
The Antares Neutrino Telescope
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
Prospects and Status of the KM3NeT Neutrino Telescope E. Tzamariudaki
on behalf of the NEMO Collaboration
Presentation transcript:

KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong

 p travel time bending cosmic rays astronomy absorption space travel Astro-Particle Physics

Energy spectrum of cosmic rays E [eV/particle] flux [(m 2 sr s GeV) -1 ] per km 2 / year 1 per m 2 / second plateau 1.5 eV = kg 1 m LHC

Cosmic particle accelerator? radio images April 1993 – June 1998 V ~ km/s charged particle SN1993J – M81 V interstellar matter time

Which particles? electronsprotons N  p   p neutrinos muons astronomy cosmic rays Synchroton radiation inverse Compton scattering e e

p ++ p ++ ambient light 00 n   Neutrino telescope: – origin cosmic rays – creation & composition of relativistic jets – mechanism of cosmic acceleration black hole

“CERN in the sky” Neutrino astronomy

1960 Markov’s idea:  range of muon  detect Cherenkov light  transparency of water Use sea water as target/detector

How? muon wavefron t ~few km ~100 m muon travels with speed of light (300,000 km/s) → ns – km neutrino interaction

Antares prototype completed May M€

position → time → 100 ms data filter 2  s offline reconstruction 1 Mb/s determination of muon direction 1 GB/s track optical background ~ 100 kHz ~5 neutrinos / day “All-data-to-shore” concept

rate [Hz] cos  neutrinos! Neutrinos? muon  d(  ) Earth

2 May :29

30 March :10

Neutrino sky map 2° Limits on neutrino fluxes, world’s best for some specific sources. part of sky invisible to Antares PSF

KM3NeT Next generation neutrino telescope 200 ‒ 250 M€

Architecture light detection data transmission data filter filtered data neutrino detector shore station analysis operation start stop 100 km ≥ 2.5 km > 1000 km

31 x 3” PMT concentrator ring increase of photocathode area by 20‒40% Optical module

6 m Mechanical cable connection Data cable storage Mechanical cable storage Frame Optical module Mechanical holder Storey 1Digital Optical Module=Dom 2Dom’s on 1 bar=Dom-bar 20Dom-bar’s on 1 tower=Dom tower

sudden Eddie currents Temperature Earth & Sea sciences France observatory food supply Bioluminescence short lived (rare) events dominate deep-sea life permanent observatory time profile

KM3NeT deep-sea infrastructure  10 km 3 ‒> 400,000 PMTs, hydrophones, ACDP, seismometers, etc. ‒< 100 kW, 100 GB/s  two main electro-optical cables ‒100 km, DC, 1 cupper conductor + sea return  network ‒passive, point-to-point optical fiber with amplification ‒new Ethernet standard Precision-Time-Protocol (”White Rabbit”)  operation ‒24h/day, 365 days/year ‒10 years without maintenance

10kHzx400,000=4GHz 310kHzx13,000=4GHz 0.5kHzx1=500Hz neutrinos10 -3 Hz point source10 -7 Hz signal / noise

data filter time Ethernet switch off-shore on shore CPU data flow

data filter time Ethernet switch off-shore on shore CPU data flow

data filter time Ethernet switch off-shore on shore CPU data flow

Data issues  operation of infrastructure – real-time computing computer farm (‘Tier 0’) – control data, QA/QC information, etc. database (Oracle)  offline analysis – distributed data processing Grid/batch computing  Monte Carlo simulations – photon tracking CPU intensive GPU (80 x faster than CPU)  data analyses – ROOT histograms, n-tuples, trees, introspection, etc. high performance I/O

Summary & outlook  Neutrino astronomy is an emerging field at the intersection of particle physics and traditional astronomy ‒several neutrino detectors operational world wide, in Europe, Antares prototype completed in 2008  Deep-sea is actively explored for large research infrastructures – construction of KM3NeT is planned for the coming years – synergy between different sciences – interesting data challenges