Speaker: Sheng Horng Yen 2003/5/26

Slides:



Advertisements
Similar presentations
Modelling of Defects DFT and complementary methods
Advertisements

Quantum Theory of Solids
顏勝宏 2003/3/10 1 Vegard’s law deviation in band gap and bowing parameter of ternary Al x Ga 1-x N compound semiconductors Speaker : Sheng-Horng Yen Bo-Ting.
Direct conversion of graphite into diamond through electronic excited states H.Nakayama and H.Katayama-Yoshida (J.Phys : Condens. Matter 15 R1077 (2003)
Semiconductor Fundamentals OUTLINE General material properties Crystal structure Crystallographic notation Read: Chapter 1.
Yoshida Lab Tatsuo Kano 1.  Introduction Computational Materials Design First-principles calculation DFT(Density Functional Theory) LDA(Local Density.
Ch.1 Introduction Optoelectronic devices: - devices deal with interaction of electronic and optical processes Solid-state physics: - study of solids, through.
PHYS 571 Gugun Gunardi Heath Kersell Damilola Daramola
Physics “Advanced Electronic Structure” Lecture 3. Improvements of DFT Contents: 1. LDA+U. 2. LDA+DMFT. 3. Supplements: Self-interaction corrections,
Electronic structure of La2-xSrxCuO4 calculated by the
Quantum Mechanics Discussion. Quantum Mechanics: The Schrödinger Equation (time independent)! Hψ = Eψ A differential (operator) eigenvalue equation H.
Atomistic Simulation Group
1 集合論 Chapter 3. 2 Chapter 3 Set Theory 3.1 Sets and Subsets A well-defined collection of objects (the set of outstanding people, outstanding is very.
第二章 太陽能電池的基本原理 及其結構 2-1 太陽能電池的基本原理 2-2 太陽能電池的基本結構 2-3 太陽能電池的製作.
CHAPTER 3 Introduction to the Quantum Theory of Solids
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
03/05/2003 Week #2 江支弘 Measuring Center or Average 量度中心或平均 Stemplot: Mean: 平均數 arithmetic average of observations Median: 中位數 middle value of... (in increasing.
第二章 供給與需求 中興大學會計學系 授課老師:簡立賢.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
統計學 ( 二 ) 朝陽科技大學工業工程與管理系副教授洪弘祈 Statistics II2 企業與統計之關係 n 品質管制 n 預測統計與市場調查 n 績效與人事管理 n 例行報告之方案評估與決策參考 n 製程改善 n 研發能力之提昇 n 產品可靠度 n 生產管制.
: Help My Brother ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11033: Help My Brother 解題者: 呂明璁 解題日期: 2007 年 5 月 14 日.
2005/7 Linear system-1 The Linear Equation System and Eliminations.
The Nuts and Bolts of First-Principles Simulation
David-Alexander Robinson Sch., Trinity College Dublin Dr. Anderson Janotti Prof. Chris Van de Walle Computational Materials Group Materials Research Laboratory,
Lecture Set No. 1 Winter 2011 ECE 162B Fundamentals of Solid State Physics Class Introduction and Crystal Structures” Prof. Steven DenBaars ECE and Materials.
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
6 彩色影像處理 6.1 色彩基礎 6.2 色彩模式 6.3 假彩色影像處理 6.4 全彩色影像處理基本原理 6.5 色彩轉換
結構學 ( 一 ) 第八次作業 97/05/22. 題目一 題目一 (a) 先決定放鬆哪個束制,成為靜定結構 以支承 C 之水平反力為贅力,則 C 點滾支 承變成自由端,即形成靜定基元結構 C 點滿足變位諧和  Δ CH =0.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
Simulation of InGaN violet and ultraviolet multiple-quantum-well laser diodes Sheng-Horng Yen, Bo-Jean Chen, and Yen-Kuang Kuo* *Department of Physics,
Electrons and Holes ECE Intrinsic Carrier Concentration Intrinsic carriers are the free electrons and holes that are generated when one or more.
1 柱體與錐體 1. 找出柱體與錐體的規則 2. 柱體的命名與特性 3. 柱體的展開圖 4. 錐體的命名與特性 5. 錐體的展開圖
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
1. Crystal Properties and Growth of Semiconductors
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Lecture 17: Excitations: TDDFT Successes and Failures of approximate functionals Build up to many-body methods Electronic Structure of Condensed Matter,
Density Functional Theory (DFT) DFT is an alternative approach to the theory of electronic structure; electron density plays a central role in DFT. Why.
The crystal structure of the III-V semiconductors
Yoshida Laboratory Yuya Yamada (山田裕也) 1 Theoretical prediction of structures and properties of simple materials under high pressure ( 高圧下における単純物質の構造と物性の理論的予測.
Effects of Si on the Vibrational and Thermal Properties of the Clathrates A 8 Ga 16 Si x Ge 30-x (A = Ba, Sr) For more details: See Emmanuel N. Nenghabi.
An Alternative Semiconductor Definition!
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
1 EE 2 Fall 2007 Class 9 slides. 2 Outline 1.Review of last class 2.Extrinsic semiconductors 3.Donor and acceptor impurities 4.Majority and minority carries.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
4.12 Modification of Bandstructure: Alloys and Heterostructures Since essentially all the electronic and optical properties of semiconductor devices are.
The Quantum Theory of Solids Allowed and forbidden energy bands Pauli Exclusion Principle In any given system, no two electrons can occupy the same state.
P.K. Lin 1.
First-Principles calculations of the structural and electronic properties of the high-K dielectric HfO 2 Kazuhito Nishitani 1,2, Patrick Rinke 2, Abdallah.
Crucial interactions in BaIrO 3 : Spin-orbit coupling and Coulomb correlation W.W. Ju ( 琚伟伟 ) and Z. Q. Yang*( 杨中芹 ) Abstract The electronic structures.
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
CCMGCCMGCCMGCCMGCCMGCCMGCCMGCCMG Ji-Hui Yang, Shiyou Chen, Wan-Jian Yin, and X.G. Gong Department of Physics and MOE laboratory for computational physical.
Correlation in graphene and graphite: electrons and phonons C. Attaccalite, M. Lazzeri, L. Wirtz, F. Mauri, and A. Rubio.
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
Van der Waals dispersion in density functional theory
Department of Physics, University of Seoul, Seoul , Korea
Semiconductor Fundamentals
Semiconductor crystals
Flexoelectric Effect in Perovskites using Ab Initio Calculations
ICFPAM’2015, March 30–April 2, Marrakech, Morocco 2015
An Alternative Semiconductor Definition!
Effective Masses in ZnGeN2
Effects of Si on the Electronic Properties of the Clathrates
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
Introduction of Master's thesis of Jih-Yuan Chang and Wen-Wei Lin
Yoshida Lab Tatsuo Kano
Metastability of the boron-vacancy complex (C center) in silicon: A hybrid functional study Cecil Ouma and Walter Meyer Department of Physics, University.
Crystallography ll 晶体学.
3-Dimensional Crystal Structure
Presentation transcript:

Speaker: Sheng Horng Yen 2003/5/26 Theoretical Investigation on Band Structure of the BAlGaInN Semiconductor Materials Speaker: Sheng Horng Yen 2003/5/26 Sheng Horng Yen 2003/5/26

Outline Crystal structure CASTEP theory introduction Wurtzite and zinc-blende AlGaInN energy-band property Zinc-blende BAlGaInN energy-band property Sheng Horng Yen 2003/5/26

Crystal coordinate In order to describe crystal structure, we choose some symmetric coordinate systems. Three axes of these coordinates are represented by (a, b, c). Angles between any two axes are represented by (, , ). Sheng Horng Yen 2003/5/26

Lattice types in three dimensions 晶 系 必備對稱元素 a b c α β γ 註 解 等軸晶系 四方晶系 六方晶系 三方晶系 斜方晶系   單斜晶系 三斜晶系 四個三重軸 一個四重軸 一個六重軸 一個三重軸 三個二重軸 一個二重軸 ≠ 無 a = b = c a = b ≠ c a ≠ b ≠ c 900 900 900 900 900 1200 900 900 ** (**為任意角) ** ** ** c軸=四重軸 c軸=六重軸 c軸=三重軸 a < b < c或 c < a < b c軸=二重軸 a<b,γ鈍角或 b軸=二重軸 a > c,β鈍角 αβγ全為 銳角或鈍角 Sheng Horng Yen 2003/5/26

Common structures of semiconductor (a) Cubic zinc-blende structure (b) Hexagonal wurtzite structure Sheng Horng Yen 2003/5/26

Crystal band diagram Wurtzite structure of GaN band diagram Sheng Horng Yen 2003/5/26

CASTEP theory introduction The calculating method is based on First Principle. (Physical fundamental principle ) What is First Principle Physical principle is correct Alter physical principle Match experimental result Not match experimental result Physical principle calculation Sheng Horng Yen 2003/5/26

Density Functional Theory First principle method is according to DFT. (Density Functional Theory) It is difficult to deal with a many-electron system because each electron does not interact only with nearest electrons. Kohn and Sham use mean-field theory to deal with such system. In Kohn-Sham method, the electron density plays a crucial role. So this function is so-called DFT. Sheng Horng Yen 2003/5/26

Local Density Approximation For purposes of practical calculation, Kohn-Sham theory function must be supplemented by an approximation. But LDA will underestimate band-gap energy of semiconductor. Now, some alter methods for LDA like electron-density gradient and electron self-energy can make band-gap energy approach experimental results. Sheng Horng Yen 2003/5/26

Wurtzite AlGaInN energy-band property InGaN energy-band property 1.strain-free 2.with strain AlGaN energy-band property AlInN energy-band property Sheng Horng Yen 2003/5/26

InxGa1-xN parameter Lattice constant a(x)=3.501x+3.162(1-x) b(x)=3.501x+3.162(1-x) c(x)=5.669x+5.142(1-x) Band-gap energy Eg(x) = x · Eg,InN + (1-x) ·Eg,GaN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Indium composition Band-Gap Energy decreases with Indium composition increases. (b=1.210 eV) Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain Tensile strain makes the bowing parameter smaller. Sheng Horng Yen 2003/5/26

AlxGa1-xN parameter Lattice constant a(x)=3.082x+3.162(1-x) b(x)=3.082x+3.162(1-x) c(x)=4.948x+5.142(1-x) Band-gap energy Eg(x) = x · Eg,AlN + (1-x) ·Eg,GaN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Aluminum composition Band-Gap Energy increases with Aluminum composition increases. (b=0.353 eV) Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain When tensile strain is about 2%, the bowing parameter has a minimum value. Sheng Horng Yen 2003/5/26

AlxIn1-xN parameter Lattice constant a(x)=3.082x+3.501(1-x) b(x)=3.082x+3.501(1-x) c(x)=4.948x+5.669(1-x) Band-gap energy Eg(x) = x · Eg,AlN + (1-x) ·Eg,InN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Result 1 Band-gap energy curves of AlGaInN. Sheng Horng Yen 2003/5/26

wurtzite InGaN、AlGaN、AlInN Result 2 WZ-Ⅲ-nitride與基板之能帶間隙與晶格常數 wurtzite InGaN、AlGaN、AlInN 能帶間隙對晶格常數之關係圖 Sheng Horng Yen 2003/5/26

Result 3 Tensile strain makes the bowing parameter of AlxIn1-xN smaller. Sheng Horng Yen 2003/5/26

Zinc-blende AlGaInN energy-band property InGaN energy-band property 1.strain-free 2.with strain AlGaN energy-band property AlInN energy-band property Sheng Horng Yen 2003/5/26

InxGa1-xN parameter Lattice constant a(x)=b(x)=c(x)=4.932x+4.537(1-x) Band-gap energy Eg(x) = x · Eg,InN + (1-x) ·Eg,GaN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Indium composition Direct bowing parameter is 1.379 eV. Indirect bowing parameter is 1.672 eV. Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain Under different strain, the direct bowing parameters always smaller than indirect. Sheng Horng Yen 2003/5/26

AlxGa1-xN parameter Lattice constant a(x)=b(x)=c(x)=4.376x+4.537(1-x) Band-gap energy Eg(x) = x · Eg,AlN + (1-x) ·Eg,GaN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Aluminum composition Direct bowing parameter is 0.755 eV. Indirect bowing parameter is 0.296 eV. Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain Under different strain, the direct bowing parameters always larger than indirect. Sheng Horng Yen 2003/5/26

AlxIn1-xN parameter Lattice constant a(x)=b(x)=c(x)=4.376x+4.932(1-x) Band-gap energy Eg(x) = x · Eg,AlN + (1-x) ·Eg,InN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Aluminum composition Direct bowing parameter is 2.729 eV. Indirect bowing parameter is 3.624 eV. Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain When strain is about 2.7%, direct and indirect bowing parameters have a point of intersection. Sheng Horng Yen 2003/5/26

Result Band-gap energy and lattice constant curves of zinc-blende Nitride-compounds. Sheng Horng Yen 2003/5/26

Zinc-blende BAlGaInN energy-band property BAlN energy-band property 1.strain-free 2.with strain BGaN energy-band property BInN energy-band property Sheng Horng Yen 2003/5/26

BxAl1-xN parameter Lattice constant a(x)=b(x)=c(x)=3.596x+4.376(1-x) Band-gap energy Eg(x) = x · Eg,BN + (1-x) ·Eg,AlN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Boron composition Direct bowing parameter is large. Indirect bowing parameter is 0.576 eV. Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain Under different strain, direct bowing parameter is much larger than indirect. Sheng Horng Yen 2003/5/26

BxGa1-xN parameter Lattice constant a(x)=b(x)=c(x)=3.596x+4.537(1-x) Band-gap energy Eg(x) = x · Eg,BN + (1-x) ·Eg,GaN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Boron composition Direct bowing parameter is 9.158 eV. Indirect bowing parameter is 2.084 eV. Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain Under different strain, direct bowing parameter is much larger than indirect. Sheng Horng Yen 2003/5/26

BxIn1-xN parameter Lattice constant a(x)=b(x)=c(x)=3.596x+4.932(1-x) Band-gap energy Eg(x) = x · Eg,BN + (1-x) ·Eg,InN - b · x · (1-x) Sheng Horng Yen 2003/5/26

Eg versus Boron composition Direct bowing parameter is 11.180 eV. Indirect bowing parameter is 6.736 eV. Sheng Horng Yen 2003/5/26

Band-gap energy curves in different strain Under different strain, direct bowing parameter is much larger than indirect. Sheng Horng Yen 2003/5/26

Summary Ⅲ-Ⅴ Nitride compounds still have many unknown physical properties. There are two reasons for larger bowing parameter. 1.Nitride compounds have Indium atom. 2.Large lattice constant difference between atoms of column Ⅴ will result large bowing parameter. Sheng Horng Yen 2003/5/26