WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,

Slides:



Advertisements
Similar presentations
M. Csanád at QM’04 Indication for deconfinement at RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra.
Advertisements

R. Lacey, SUNY Stony Brook 1 Arkadij Taranenko Quark Matter 2006 November 13-20, Shanghai, China Nuclear Chemistry Group SUNY Stony Brook, USA PHENIX Studies.
LP. Csernai, Sept. 4, 2001, Palaiseau FR 1 L.P. Csernai, C. Anderlik, V. Magas, D. Strottman.
Quantum Opacity, RHIC HBT Puzzle, and the Chiral Phase Transition RHIC Physics, HBT and RHIC HBT Puzzle Quantum mech. treatment of optical potential, U.
Marcus Bleicher, ETD, Montreal 07/2007 Elliptic Flow and Fluctuations in Heavy Ion collisions Marcus Bleicher Institut für Theoretische Physik Goethe Universität.
Motivation One of the major findings at the Relativistic Heavy Ion Collider (RHIC) is the suppression of the highly energetic particles which raises the.
Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
1 Baryonic Resonance Why resonances and why  * ? How do we search for them ? What did we learn so far? What else can we do in the.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
Hydrodynamic Approaches to Relativistic Heavy Ion Collisions Tetsufumi Hirano RIKEN BNL Research Center.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Interferometry signatures of new states in hydrodynamic picture of A+A collision.
STAR Looking Through the “Veil of Hadronization”: Pion Entropy & PSD at RHIC John G. Cramer Department of Physics University of Washington, Seattle, WA,
HBT Radii and Space-Momentum Correlation at RHIC Jingbo Zhang Department of Physics, Harbin Institute of Technology July 11, Hefei.
Resonance Dynamics in Heavy Ion Collisions 22nd Winter Workshop on Nuclear Dynamics , La Jolla, California Sascha Vogel, Marcus Bleicher UrQMD.
Collision system dependence of 3-D Gaussian source size measured by RHIC-PHENIX Akitomo Enokizono Lawrence Livermore National Laboratory 23 rd Winter Workshop.
WPCF07, Sonoma, California, August Observation of Extended Pion Sources in Relativistic Heavy Ion Collisions: extraction of source breakup time.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
Máté Csanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo.
KROMĚŘĺŽ, August 2005WPCF Evolution of observables in hydro- and kinetic models of A+A collisions Yu. Sinyukov, BITP, Kiev.
Dubna 10 March 2006Workshop EuroIons Matter evolution and soft physics in A+A collisions Yu. Sinyukov, BITP, Kiev.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Workshop for Particle Correlations and Femtoscopy 2011
Matter System Size and Energy Dependence of Strangeness Production Sevil Salur Yale University for the STAR Collaboration.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
Do small systems equilibrate chemically? Ingrid Kraus TU Darmstadt.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
T. KSU, USA, 2009/01/23 1 Csörgő, Tamás MTA KFKI RMKI, Budapest, Hungary High temperature superfluidity in Introduction: “RHIC Serves.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
Zimányi Winter School, 2013/12/05 Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I.
1/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia Czech Technical University,
T. NN2006, Rio de Janeiro, 2006/8/31 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary Correlation Signatures of a Second Order QCD Phase Transition.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Sergey Panitkin Current Status of the RHIC HBT Puzzle Sergey Panitkin Brookhaven National Lab La Thuile, March 18, 2005.
Partial thermalization, a key ingredient of the HBT Puzzle Clément Gombeaud CEA/Saclay-CNRS Quark-Matter 09, April 09.
M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE.
T. WPCF’06, Sao Paulo, 2006/9/10 1 T. Csörgő, M. Csanád and M. Nagy MTA KFKI RMKI, Budapest, Hungary Anomalous diffusion of pions at RHIC Introduction:
Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics –
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Inha Nuclear Physics Group Quantum Opacity and Refractivity in HBT Puzzle Jin-Hee Yoon Dept. of Physics, Inha University, Korea John G. Cramer,
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
21 st WWND, W. Holzmann Wolf Gerrit Holzmann (Nuclear Chemistry, SUNY Stony Brook) for the Collaboration Tomographic Studies of the sQGP at RHIC: the next.
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Systematic Study of Elliptic Flow at RHIC Maya SHIMOMURA University of Tsukuba ATHIC 2008 University of Tsukuba, Japan October 13-15, 2008.
BNL/ Tatsuya CHUJO JPS RHIC symposium, Chuo Univ., Tokyo Hadron Production at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX Collaboration.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
A. Ster1,2, T. Csörgő2 1 KFKI-RMKI, 2 KFKI-MFA, Hungary
Hydro + Cascade Model at RHIC
New solutions of fireball hydrodynamics with shear and bulk viscosity
Presentation transcript:

WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA, Hungary The emission function The emission function Fluid dynamical solutions by the Buda-Lund model Fluid dynamical solutions by the Buda-Lund model Emission functions from different reactions Emission functions from different reactions Conclusion Conclusion

WPCF-2005, Kromirez A. Ster Hungary 2 Particle emission phase-space density function: Particle emission phase-space density function: The emission function Invariant momentum distribution (observable)

WPCF-2005, Kromirez A. Ster Hungary 3 A general form A general form With probability distribution for fluids With probability distribution for fluids The emission function

WPCF-2005, Kromirez A. Ster Hungary 4 hypersurface hypersurface flow flow chemical potential chemical potential temperature temperature The emission function must comply with the 5 differential equations of fluid dynamics: must comply with the 5 differential equations of fluid dynamics: continuity continuity momentum conservation momentum conservation energy conservation energy conservation

WPCF-2005, Kromirez A. Ster Hungary 5 3D expansion with axial or ellipsoidal symmetry 3D expansion with axial or ellipsoidal symmetry Local thermal equilibrium Local thermal equilibrium Analytic expressions for the observables (no numerical simulations, but formulas) Analytic expressions for the observables (no numerical simulations, but formulas) Reproduces known exact hydro solutions (nonrelativistic, Hubble, Bjorken limit) Reproduces known exact hydro solutions (nonrelativistic, Hubble, Bjorken limit) Core-halo picture (long lived resonances) Core-halo picture (long lived resonances) The Buda-Lund fluid model M.Csanád, T.Csörgő, B. Lörstad: Nucl.Phys.A742:80-94,2004; nucl-th/

WPCF-2005, Kromirez A. Ster Hungary 6 The Buda-Lund fluid model Buda-Lund solutions to the differential fluid equations: Buda-Lund solutions to the differential fluid equations:

WPCF-2005, Kromirez A. Ster Hungary 7 The Buda-Lund fluid model Where (in case of axial symmetry): Where (in case of axial symmetry):

WPCF-2005, Kromirez A. Ster Hungary 8 The Buda-Lund fluid model Observables Observables

WPCF-2005, Kromirez A. Ster Hungary 9 N. M. Agababyan et al, EHS/NA22, PLB 422 (1998) 395 T. Csörgő, hep-ph/001233, Heavy Ion Phys. 15 (2002) 1-80 Buda-Lund fits to NA22 h+p

WPCF-2005, Kromirez A. Ster Hungary 10 Emission function from NA22 h+p

WPCF-2005, Kromirez A. Ster Hungary 11 Buda-Lund fits to SPS Pb+Pb A. Ster, T.Csörgő, B. Lörstad, Nucl.Phys. A661 (1999) , nucl-th/ NA44NA49

WPCF-2005, Kromirez A. Ster Hungary 12 Emission function from SPS Pb+Pb

WPCF-2005, Kromirez A. Ster Hungary 13 A. Ster, et al., Acta Phys.Polon. B35 (2004) , nucl-th/ Buda-Lund fits to RHIC Au+Au

WPCF-2005, Kromirez A. Ster Hungary 14 Buda-Lund fits to RHIC Au+Au

WPCF-2005, Kromirez A. Ster Hungary 15 Emission function from RHIC Au+Au preliminary

WPCF-2005, Kromirez A. Ster Hungary 16 M. Csanád, et al., J.Phys.G30: S1079-S1082, 2004, nucl-th/ Buda-Lund fits to RHIC Au+Au

WPCF-2005, Kromirez A. Ster Hungary 17 Emission function from RHIC Au+Au preliminary

WPCF-2005, Kromirez A. Ster Hungary 18 Buda-Lund fit results

WPCF-2005, Kromirez A. Ster Hungary 19 Buda-Lund fits to RHIC p+p T. Csörgő, et al., To appear in Heavy Ion Physics, hep-ph/

WPCF-2005, Kromirez A. Ster Hungary 20 Emission function from RHIC p+p preliminary

WPCF-2005, Kromirez A. Ster Hungary 21 Buda-Lund fit results

WPCF-2005, Kromirez A. Ster Hungary 22 Buda-Lund 1st (bad) fits to RHIC d+Au

WPCF-2005, Kromirez A. Ster Hungary 23 Buda-Lund fit results

WPCF-2005, Kromirez A. Ster Hungary 24 Conclusions Buda-Lund model describes single particle distributions, rapidity distributions, HBT correlation function radii w/o puzzle in the following reactions: Buda-Lund model describes single particle distributions, rapidity distributions, HBT correlation function radii w/o puzzle in the following reactions: *** *** Rings of fire in and Rings of fire in and Fireballs in and Fireballs in and T < T c in h+p and T < T c in h+p and T > T c in p+p and T > T c in p+p and