of magnetized discharge plasmas: fluid electrons + particle ions

Slides:



Advertisements
Similar presentations
Applications of the Motion of Charged Particles in a Magnetic Field AP Physics C Montwood High School R. Casao.
Advertisements

Imperial College London 1 3. Beam extraction 3. Extraction of particle beams 3.1 The space charge limit and Child-Langmuirs law 3.2 External and internal.
Plasma Medicine in Vorpal Tech-X Workshop / ICOPS 2012, Edinburgh, UK 8-12 July, 2012 Alexandre Likhanskii Tech-X Corporation.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR Authors: Gabriel Torrente Julio Puerta Norberto Labrador.
AS 4002 Star Formation & Plasma Astrophysics BACKGROUND: Maxwell’s Equations (mks) H (the magnetic field) and D (the electric displacement) to eliminate.
Laboratoire de Physique des Plasmas Global Model of Micro-Hollow Cathode Discharges Pascal CHABERT Laboratoire de Physique des Plasmas, Ecole Polytechnique,
1 CENTER for EDGE PLASMA SCIENCES C E PS Status of Divertor Plasma Simulator – II (DiPS-II) 2 nd PMIF Workshop Sep. 19, 2011 Julich, Germany H.-J. Woo.
PIII for Hydrogen Storage
Numerical investigations of a cylindrical Hall thruster K. Matyash, R. Schneider, O. Kalentev Greifswald University, Greifswald, D-17487, Germany Y. Raitses,
Effect of supra thermal electrons on particle charge in RF sheath A.A.Samarian and S.V. Vladimirov School of Physics, University of Sydney, NSW 2006, Australia.
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
Alfvén-cyclotron wave mode structure: linear and nonlinear behavior J. A. Araneda 1, H. Astudillo 1, and E. Marsch 2 1 Departamento de Física, Universidad.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
NUMERICAL INVESTIGATION OF WAVE EFFECTS IN HIGH-FREQUENCY CAPACITIVELY COUPLED PLASMAS* Yang Yang and Mark J. Kushner Department of Electrical and Computer.
Diversion of Plasma in Beam Port with a Vertical Magnetic Field: 3-D Simulations D. V. Rose, D. R. Welch, and S. S. Yu Presented at the ARIES Project Meeting.
Hybrid Simulation of Ion-Cyclotron Turbulence Induced by Artificial Plasma Cloud in the Magnetosphere W. Scales, J. Wang, C. Chang Center for Space Science.
Computational Modeling Capabilities for Neutral Gas Injection Wayne Scales and Joseph Wang Virginia Tech Center for Space Science and Engineering.
Iain D. Boyd University of Michigan Modeling of Ion Sputtering and Product Transport.
Collisional ionization in the beam body  Just behind the front, by continuity  →0 and the three body recombination  (T e,E) is negligible.
Simulations of Neutralized Drift Compression D. R. Welch, D. V. Rose Mission Research Corporation Albuquerque, NM S. S. Yu Lawrence Berkeley National.
MAGNETICALLY ENHANCED MULTIPLE FREQUENCY CAPACITIVELY COUPLED PLASMAS: DYNAMICS AND STRATEGIES Yang Yang and Mark J. Kushner Iowa State University Department.
Physics of fusion power Lecture 14: Collisions / Transport.
INVESTIGATIONS OF MAGNETICALLY ENHANCED RIE REACTORS WITH ROTATING (NON-UNIFORM) MAGNETIC FIELDS Natalia Yu. Babaeva and Mark J. Kushner University of.
5. Simplified Transport Equations We want to derive two fundamental transport properties, diffusion and viscosity. Unable to handle the 13-moment system.
Surface and volume production of negative ions in a low-pressure plasma E. Stoffels, W.W. Stoffels, V.M. Kroutilina*, H.-E. Wagner* and J. Meichsner*,
Plasma Kinetics around a Dust Grain in an Ion Flow N F Cramer and S V Vladimirov, School of Physics, University of Sydney, S A Maiorov, General Physics.
Physics of fusion power
F. Cheung, A. Samarian, W. Tsang, B. James School of Physics, University of Sydney, NSW 2006, Australia.
Simulation of streamer propagation using a PIC-MCC code. Application to Sprite discharges. Olivier Chanrion and Torsten Neubert Danish National Space Center.
Physics of fusion power Lecture 7: particle motion.
Physics of Fusion power Lecture4 : Quasi-neutrality Force on the plasma.
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
F.M.H. Cheung School of Physics, University of Sydney, NSW 2006, Australia.
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Chapter 5 Diffusion and resistivity
Jean-Charles Matéo-Vélez, Frédéric Thivet, Pierre Degond * ONERA - Centre de Toulouse * CNRS - Mathématiques pour l'Industrie et la Physique, Toulouse.
Wave induced supersonic rotation in mirrors Abraham Fetterman and Nathaniel Fisch Princeton University.
Transport in a field aligned magnetized plasma and neutral gas boundary: The end of the plasma… C.M. Cooper, W. Gekelman, P. Pribyl, J. Maggs, Z. Lucky.
PY212 Electricity and Magnetism I. Electrostatics.
Shu Nishioka Faculty of Science and Technology, Keio Univ.
Overview of equations and assumptions Elena Khomenko, Manuel Collados, Antonio Díaz Departamento de Astrofísica, Universidad de La Laguna and Instituto.
Study of H - ion extraction and beam optics using the 2D3V and 3D3V PIC method K. Miyamoto 1), S. Nishioka 2), S. Okuda 3), I. Goto 2), A. Hatayama 2)
Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering EF2245 Space Physics 2009.
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Particle-based Model of full-size ITER-relevant Negative Ion Source
Why plasma processing? (1) UCLA Accurate etching of fine features.
1 S. CHABLE a F. ROGIER b a - ONERA, 2 av. Ed. Belin, TOULOUSE Cedex 4 b - MIP, Université Paul Sabatier, 118, route de Narbonne, TOULOUSE.
Plasmas. The “Fourth State” of the Matter The matter in “ordinary” conditions presents itself in three fundamental states of aggregation: solid, liquid.
Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.
Two problems with gas discharges 1.Anomalous skin depth in ICPs 2.Electron diffusion across magnetic fields Problem 1: Density does not peak near the.
Ionization Detectors Basic operation
Magnetic Deflection of Ionized Target Ions D. V. Rose, A. E. Robson, J. D. Sethian, D. R. Welch, and R. E. Clark March 3, 2005 HAPL Meeting, NRL.
Hybrid MHD-Gyrokinetic Simulations for Fusion Reseach G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA, Frascati, (Rome) Italy Introduction.
Damping of the dust particle oscillations at very low neutral pressure M. Pustylnik, N. Ohno, S.Takamura, R. Smirnov.
1 Collisional frequencies, pressure tensor and plasma drifts Workshop on Partially Ionized Plasmas in Astrophysics Pto de la Cruz, Tenerife, SPAIN 19-VI-2012.
CONTROL OF ELECTRON ENERGY DISTRIBUTIONS THROUGH INTERACTION OF ELECTRON BEAMS AND THE BULK IN CAPACITIVELY COUPLED PLASMAS* Sang-Heon Song a) and Mark.
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle.
Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma Dmytro Sydorenko University of Alberta,
Introduction to Plasma Physics and Plasma-based Acceleration
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Fluid simulation of instabilities in partially magnetized plasmas
DC Sputtering Disadvantage #1 Low secondary electron yield
Introduction Motivation Objective
Principles of Global Modeling
1.6 Glow Discharges and Plasma
LECTURE I: SINGLE-PARTICLE MOTIONS IN ELECTRIC AND MAGNETIC FIELDS
Chapter 28 Magnetic Fields
Presentation transcript:

of magnetized discharge plasmas: fluid electrons + particle ions Hybrid models of magnetized discharge plasmas: fluid electrons + particle ions Gerjan Hagelaar Centre de Physique des Plasmas et de leurs Applications de Toulouse Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Introduction Magnetic fields used in low-pressure discharges: magnetron electron-cyclotron resonance (ECR) helicon Hall-effect thruster etc… (magnetized discharges) Magnetic field  complex physics Insight from hybrid models

Plan Elementary physics Hybrid models Limits of hybrid models Illustrative model results: - ECR reactor - Hall thruster - Galathea trap

Elementary effects of the magnetic field Cyclotron motion  confinement Perpendicular electric field  EB drift Collisions destroy magnetic confinement electron ion electron EB drift (azimuthal) cyclotron frequency Larmor radius collision E B B

Typical conditions Long mean free path plasma pressure 0.1 – 10 mTorr plasma density 1015 – 1019 m-3 magnetic field 0.001 – 0.1 T electron temperature 2 – 20 eV lengths Debye length 10-5 – 10-3 m electron Larmor radius 10-4 – 0.01 m ion Larmor radius 0.02 – 5 m mean free path 0.01 – 1 m plasma size 0.02 – 1 m frequencies electron cyclotron 3108 – 21010 s-1 electron collision 3105 –108 s-1 Long mean free path Electrons are magnetized  collisions + ionization Ions have only few collisions Magnetic field not influenced by plasma

Modelling Low pressure  particle-in-cell (PIC): electron and ion trajectories space charge electric fields Magnetized PIC models cumbersome: high plasma density  small time steps, small cells important 2D effects interest in simpler faster models describe electrons by collisional fluid equations K. A. Ashtiani et al, J. Appl. Phys. 78 (4), 2270-2278 (1995). S. Kondo and K. Nanbu, J. Phys. D: Appl. Phys. 32, 1142-1152 (1999). J. C. Adam et al, Phys. Plasmas 11 (1), 295-305 (2004).

Electron fluid equations Electron conservation Anisotropic flux Mobility tensor (classical theory) ionisation source flux drift diffusion collision frequency cyclotron frequency perpendicular mobility << parallel mobility

Hybrid models Non-quasineutral scheme: ion particles  ni electron fluid  ne Poisson   Quasineutral scheme: ion particles  ni = ne electron fluid   no plasma oscillations large time steps no sheaths  large cells (Ohm’s law) R. K. Porteous et al, Plasma Sources Sci. Technol. 3, 25-39 (1994). J. M. Fife, Ph. D. thesis, MIT, 1998. G. J. M. Hagelaar et al, J. Appl. Phys. 91 (9), 5592-5598 (2002).

Limits of the electron equations Anomalous transport B  empirical parameters Non-local effects //B: inertia, mirror confinement But: flux //B limited by boundaries classical mobility ? Bohm mobility drift diffusion  (Boltzmann) potential = constant + diffusion term Magnetic field lines approximately equipotential

Numerical problem Extreme anisotropy  numerical errors tend to destroy the magnetic confinement Special precautions necessary (flux scheme)  anode a cathodec insulator wall uniform B  l   h  electron flux in the middle of the channel [cyclotron frequency] / [collision frequency]

Examples of model results Non-quasineutral hybrid model  sheaths resolved Fixed: Gaussian ionisation source uniform electron temperature (diffusion) electron collision frequency Calculated: electron/ion densities electron/ion fluxes, currents self-consistent potential

Example I : Diffusion in ECR reactor process chamber source chamber

ECR reactor with dielectric wall no (pre)sheath !! Magnetic confinement reduces loss to source wall

ECR reactor with grounded wall normal (pre)sheath current loop Magnetic confinement shortcircuited by walls A. Simon, Phys. Rev. 98 (2), 317-318 (1955).

Example II : Hall-effect thruster

Hall-effect thruster Equipotential lines  magnetic field lines cathode sheath negligible ion beam trapped low-energy ions acceleration region Equipotential lines  magnetic field lines Applied voltage penetrates in plasma bulk

Example III : semi-Galathea trap A. I. Morozov and V. V. Savel’ev, Physics – Uspekhi 41 (11), 1049-1089 (1998).

Semi-Galathea trap 70 % of ions guided to exit negative plasma potential ! (inverted presheath) electron current from emissive cathode to walls Potential well reduces ion wall loss and guides ions to exit

Semi-Galathea trap without emission cathode sheath Potential well disappears because of cathode sheath

Conclusions In magnetized discharges, charged particle transport and space charge fields are different This can be studied in 2D by hybrid models No predictive simulations, but insight in physical principles