Neutrino Ettore Majorana Observatory

Slides:



Advertisements
Similar presentations
NEMO-III Status and prospects. 12 December 2005 HEP group Christmas meeting Vladimir Vasiliev.
Advertisements

NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
SuperNEMO Thoughts about next generation NEMO experiment Ruben Saakyan UCL.
Double Beta Decay review
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
M. Dracos 1 Double Beta experiment with emulsions?
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
Low radioactivity at the Modane Underground Laboratory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
Double beta search : experimental view Laurent SIMARD, LAL - Orsay 6 th Rencontres du Vietnam, Hanoi, 6 th -12 nd August 2006.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
19 July 2012Page 1 Neutrino Mass Julia Sedgbeer High Energy Physics, Blackett Laboratory.
SuperNEMO Simulations Darren Price University of Manchester July, 2005.
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Double beta decay and neutrino physics Osaka University M. Nomachi.
Probing neutrino mass with SuperNEMO Ruben Saakyan Ulisse at LSM Workshop 30 June 2008.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
ILIAS JRA2 : WG1+WG2 Se82, production and purification Cascina, November 3rd, 2005Dominique Lalanne.
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
A simulation study on DBD search with pilot setup AMoRE - SNU jilee.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
SuperNEMO collaboration
Measurement of surface radioactivity by Alpha/Beta detection
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
SuperNEMO 1st Report to Oversight Committee
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Preliminary Study of 214Bi Background in 100Mo foils
Search for 0nbb decay with SuperNEMO
• • • Ge measurements for SuperNEMO
Double Beta experiment using nuclear emulsions?
Double Beta experiment with emulsions?
Presentation transcript:

Neutrino Ettore Majorana Observatory NEMO Experiment Neutrino Ettore Majorana Observatory Xavier Sarazin 1 On behalf of the NEMO Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux, France Charles University, Praha, Czech Republic CTU, Praha, Czech Republic INEEL, Idaho Falls, USA IReS, IN2P3-CNRS et Université de Strasbourg, France ITEP, Moscou, Russia JINR, Dubna, Russia Jyvaskyla University, Finland 1 LAL, IN2P3-CNRS et Université Paris-Sud, France LSCE, CNRS Gif sur Yvette, France LPC, IN2P3-CNRS et Université de Caen, France Mount Holyoke College, USA RRC Kurchatov Institute, Moscow, Russia Saga University, Saga, Japon UCL, London, Great-Britain Xavier Sarazin for the NEMO-3 Collaboration TPC Workshop 20-21 December 2004

Double beta bb(0n) decay : Physics beyond the standard model DL = 2 Process Majorana Neutrino n = n and effective mass <mn> Right-handed current in weak interaction Majoron emission SUSY particle exchange bb(0n) : 2n  2p+2e- p n W- e- neR h nM neL h ( ) e- W- n p (Qbb ~ MeV)

Philosophy of NEMO experiment Use a Tracking Detector + a Magnetic Field in order to recognize e-, e+, g and a particles Zero-background experiment Gold-event experiment with a direct signature of the two emitted e-

Fréjus Underground Laboratory : 4800 m.w.e. The NEMO3 detector 3 m 4 m B (25 G) 20 sectors Fréjus Underground Laboratory : 4800 m.w.e. Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water + Boron (ext. wall); 40 cm wood (top and bottom) Source: 10 kg of  isotopes cylindrical, S = 20 m2, e ~ 60 mg/cm2 Tracking detector: drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H2O Calorimeter: FWHM ~ 15% @ 1 MeV 1940 plastic scintillators coupled to low radioactivity PMTs ToF resolution 250 ps @ 1 MeV Able to identify e-, e+, g and a

PMTs scintillators Cathodic rings Wire chamber Calibration tube bb isotope foils

AUGUST 2001

Start taking data 14 February 2003 NEMO-3 Opening Day, July 2002 Start taking data 14 February 2003 Water tank wood coil Iron shield

bb decay isotopes in NEMO-3 detector bb2n measurement 116Cd 405 g Qbb = 2805 keV 96Zr 9.4 g Qbb = 3350 keV 150Nd 37.0 g Qbb = 3367 keV 48Ca 7.0 g Qbb = 4272 keV 130Te 454 g Qbb = 2529 keV External bkg measurement 100Mo 6.914 kg Qbb = 3034 keV 82Se 0.932 kg Qbb = 2995 keV natTe 491 g Cu 621 g bb0n search (All the enriched isotopes produced in Russia)

bb events selection in NEMO-3 Deposited energy: E1+E2= 2088 keV Internal hypothesis: (Dt)mes –(Dt)theo = 0.22 ns Common vertex: (Dvertex) = 2.1 mm Vertex emission (Dvertex)// = 5.7 mm Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: 2003-03-20 Criteria to select bb events: 2 tracks with charge < 0 2 PMT, each > 200 keV PMT-Track association Common vertex Internal hypothesis (external event rejection) No other isolated PMT (g rejection) No delayed track (214Bi rejection) bb events selection in NEMO-3 Typical bb2n event observed from 100Mo Transverse view Run Number: 2040 Event Number: 9732 Date: 2003-03-20 Longitudinal view 100Mo foil 100Mo foil Geiger plasma longitudinal propagation Drift distance Scintillator + PMT Trigger: 1 PMT > 150 keV 3 Geiger hits (2 neighbour layers + 1) Trigger rate = 7 Hz bb events: 1 event every 1.5 minutes

100Mo 22 preliminary results Neutrino 2004 100Mo 22 preliminary results (Data 14 Feb. 2003 – 22 Mar. 2004) Sum Energy Spectrum Angular Distribution NEMO-3 145 245 events 6914 g 241.5 days S/B = 45.8 NEMO-3 145 245 events 6914 g 241.5 days S/B = 45.8 100Mo 100Mo Data 22 Monte Carlo Data Background subtracted 22 Monte Carlo Background subtracted E1 + E2 (keV) Cos() T1/2 = 7.72 ± 0.02 (stat) ± 0.54 (syst)  1018 y 4.57 kg.y

NEMO can measure each component of background Radon Internal 214Bi impurities (e-, delayed a) channel with T1/2 (a) = 164 ms (214Bi - 214Po -210Pb ) Internal 208Tl impurities Internal (e- N g) channel with Eg= 2.6 MeV (e-, delayed a) channel with T1/2(a)=300 ns (212Bi  212Po) External 208Tl impurities External (e-, g) channel External neutrons External gammas e- crossing, e+e-, e-e- > 4 MeV

BACKGROUND EVENTS OBSERVED BY NEMO-3… Electron crossing > 4 MeV Neutron capture Electron + a delay track (164 ms) 214Bi  214Po  210Pb  Electron + N g’s 208Tl (Eg = 2.6 MeV) Electron – positron pair B rejection

Radon was the dominant background Radon in the NEMO-3 gas of the wire chamber Due to a tiny diffusion of the radon of the laboratory inside the detector A(Radon) in the lab ~15 Bq/m3 Two independant measurements of radon in NEMO-3 gas Good agreement between the two measurements Radon detector at the input/output of the NEMO-3 gas ~ 20 counts/day for 20 mBq/ m3 (1e- + 1 a) channel in the NEMO-3 data: Delayed tracks (<700 ms) to tag delayed a from 214Po 214Bi  214Po (164 ms)  210Pb ~ 200 counts/hour for 20 mBq/m3 A(Radon) in NEMO-3  20 mBq/m3 Decay in gas b- delayed a 222Rn (3.8 days) 218Po 214Pb 214Bi 214Po 210Pb b a 164 ms ~ 1 bb0n-like events/year/kg with 2.8 < E1+E2 < 3.2 MeV Radon was the dominant background for bb0n search in NEMO-3 !!!

bb0n Analysis with 100Mo T1/2(bb0n) > 3.5 1023 y 90% C.L. Neutrino 2004 100Mo 6914 g 265 days Data bb2n Monte-Carlo Radon E1+E2 (MeV) bb0n arbitrary unit Cu + natTe + 130Te 265 days Radon Monte-Carlo Data E1+E2 (MeV) 8 11.4  3.4 ____ 2.6  0.7 2 2.6<E1+E2<3.2 2.8<E1+E2<3.2 100Mo 2.6<E1+E2<3.2 2.8<E1+E2<3.2 100Mo 2b2n M-C 32.3  1.9 1.4  0.2 Radon M-C 23.5  6.7 5.6  1.7 TOTAL Monte-Carlo 55.8  7.0 7.0  1.7 DATA 50 8 T1/2(bb0n) > 3.5 1023 y 90% C.L. mn < 0.7 – 1.2 eV

Free-Radon Purification System in construction Radon was the dominant background for NEMO-3 A(222Rn) in the LSM ~ 15 Bq/m3 Factor ~ 10 too high May 2004 : Tent surrounding the detector May 2004 October 2004 : Radon-free SuperKamiokande-like Air Factory A(222Rn) < 10 mBq/m3 120 m3/h 2 x 500 kg charcoal @ -40oC Today A(222Rn) in tent < 0.5 Bq/m3 Rejection Factor > 30

Expected sensitivity after 5 years of data Conclusions after more than 1 year of NEMO-3 running NEMO detector is robust NEMO can measure each component of its background External 208Tl: external (e-,g) channel External neutrons and g: crossing e- above 4 MeV Internal 208Tl impurities: internal (e-,Ng) channel, A<100 mBq/kg Internal 214Bi impurities and Radon: (e-,delayed a) channel from Bi-Po process Radon was the dominant background supressed by radon-free air surrounding the detector Very low levels of background have be achieved with ~ 10 kg of isotopes Expected sensitivity after 5 years of data (with FWHM ~ 15% @ 1 MeV) with 7 kg of 100Mo: T1/2(bb0n) > 4 .1024 y  <mn> < 0.2 – 0.35 eV (90% C.L.) with 1 kg of 82Se: T1/2(bb0n) > 8 .1023 y  <mn> < 0.65 – 1.8 eV (90% C.L.)

Can we increase the mass of isotope Question : Can we increase the mass of isotope with such a detector ?

SuperNEMO: a futur detector with ~100 kg of 82Se Zero background experiment with a direct signature of the two emitted e-  To reach a sensitivity ~ 50 meV bb(0n) ? Klapdor et al. Phys. Lett. B 586(2004), 198-212 Test Klapdor’s claim T 1/2 (0n) = (0.69 - 4.18) 1025 y (90% C.L.) 0.1 eV < mn < 0.9 eV NEMO-3 Access to inverted hierarchical mass spectrum SuperNEMO

2b2n bkg with 100 kg of 82Se  2b2n bkg with 7 kg of 100Mo T1/2 (2b2n) = 7.1018 years for 100Mo = 1020 years for 82Se 2b2n bkg with 100 kg of 82Se  2b2n bkg with 7 kg of 100Mo > e A M . t Nexcluded ln2 . N (years) M: Mass of isotope bb (g) e: Detection efficiency With e ~ 0.2 (as NEMO-3) M = 100 kg of 82Se « Zero Background »  Energy resolution FWHM < 8% @ 1 MeV 5 years of data: T1/2 (0n) > 2.1026 y  mn < 40 – 100 meV 10 years of data: T1/2 (0n) > 4.1026 y  mn < 30 – 70 meV

Example of a module of SuperNEMO: « extrapolation of NEMO-2-3 » Module 4 x 4 x 1 m3 Source 3 x 3 m2 ~ 5 kg of 82Se 1000 scintillator blocs (20 x 20 x 10) cm + PMTs 8’’ 4 m 1 m 4 m 3 m 3 m 4 m

etc… Example of a SuperNEMO = 20 modules with water shield ~ 9 m large, ~ 12 m high to remove a module… ~ 70 m long !… ~ 1.5 m ~ 5 m etc… Water shield Coil for Magnetic field

Program R&D during 2 years Calorimeter FWHM = 7 % scintillator + PMT Collaboration France (CENBG), Dubna, Kharkov, UCL and Photonis Light collection to decrease number of PMT separate e- calorimeter (thin scintillator) and g tagging (larger scinttilator) Source R&D purification 82Se in INEEL (USA) 208Tl ~5mBq/kg and 214Bi 20 mBq/kg (factor 10 / NEMO3) Production of 2 kg of 82Se with ILIAS (Russia) Active sources 20 mm (LAL, Russia, INEEL) e- e- Tracking Full plasma propagation with Geiger cells of 4 m long (LAL) reduce Diameter /or mass of wires a/e- tagging beetween active sources e- e- Simulations (IRES, LPC Caen) Geometry Shielding … Active source Proposal for R&D and first module in preparation with british collaborators

CONCLUSIONS Almost 2 years of NEMO-3 running have demonstrated that NEMO detector is robust Detector can measure each component of background origines of background are understood very low backgrounds have been achieved (as the proposal) Possible to extrapolate such a detector to a SuperNEMO detector with ~100 kg of 82Se to reach ~ 50 meV Pragmatic experimental approche Proposal for 2 years of R&D and construction of a 1st module is under preparation