Gas Laws.

Slides:



Advertisements
Similar presentations
Boyle, Charles and Gay-Lussac
Advertisements

Chapter 11: Behavior of Gases
Gas Laws.
Ch. 13: Gases Sec. 13.1: The Gas Laws.
Kinetic Molecular Theory of Gases and the Gas Laws
Gas Laws.
Physical Characteristics of Gases
Physical Characteristics of Gases
Gas Laws.
The Nature of Gases Gas Pressure –the force exerted by a gas per unit surface area of an object Due to: a) force of collisions b) number of collisions.
Chapter 10 PHYSICAL CHARACTERISTICS OF GASES
THE GAS LAWS. Kinetic Theory (Gases) Assumptions 1.Gas particles do not attract or repel each other 2. Gas particles are much smaller than the distances.
Gases Chapter 10/11 Modern Chemistry
Drill 4/16/2015 What do you think is the oldest form of human flight? How does it work?
Pressure and Pressure Conversions
Ch. 5 Gases. Ch. 5 Topics Kinetic Molecular Theory and Gases Ideal vs. Real Gases What conditions are ideal for gases? PV=nRT PV=(m/MM)RT Know how to.
2-Variable Gas Laws. Kinetic-Molecular Theory 1. Gas particles do not attract or repel each other 2. Gas particles are much smaller than the distances.
The Gas Laws.
Gases Chapter – The Gas Laws Kinetic Theory = assumes that gas particles:  do not repel or attract each other  are much smaller than the distances.
Chapter 14 – Gases Kinetic Molecular Theory (KMT) Defn – describes the behavior of gases in terms of particle motion Defn – describes the behavior of.
3.2: The Gas Laws.
Chapter 11 Behavior of Gases. Warm-up #1 How much force do you think it would take to crush this railroad tank car? Stay tuned.
Third Nine Weeks- 6 weeks review
Gas Laws.
Pressure and Force Pressure (P) is defined as the force per unit area on a surface. Gas pressure is caused by collisions of the gas molecules with each.
General Properties of Gases There is a lot of “free” space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely.
GAS LAWS. Behavior of Gases Gases can expand to fill their container Gases can be compressed –Because of the space between gas particles Compressibility:
Gases Chapter 13.
Aim: What are the properties of Gases?. Compressibility Compressibility is measure of how much volume decreases under increased pressure. Gases are easily.
Gases
Gases Chapter 14.
Gas Laws.
1 Physical Characteristics of Gases Chapter Kinetic-molecular theory Particles of matter are always in motion.
The Behavior of Gases Kinetic Theory - “kinetic” = motion - kinetic energy – the energy an object has due to motion - kinetic theory – states that the.
Gases Chapter 13.
Kinetic-Molecular Theory Describes the behavior of an “ideal” gas in terms of particle size, motion, and energy based on 5 assumptions…
GASES.
Gas Laws Chapter 14 (last one!!) Kinetic Molecular Theory helps explain why gases behave differently than solids and liquids Gases…. 1. Gas particles do.
GENERAL CHEMISTRY SPRING 2010 Mr. Hoffman Mrs. Paustian The Behavior of Gases Unit 9.
Unit 9: Gases Chapter 14 Chemistry 1K. Table of Contents Chapter 14: Gases –14.1: The Gas Laws –14.2: The Combined Gas Laws & Avogadro’s Principle –14.3:
CLE Apply the kinetic molecular theory to describe solids, liquids, and gases. CLE Investigate characteristics associated with the gaseous.
Gas Laws Boyle ’ s Law Charles ’ s law Gay-Lussac ’ s Law Avogadro ’ s Law Dalton ’ s Law Henry ’ s Law 1.
The Gas Laws A Tutorial on the Behavior of Gases..
GASES THE THIRD STATE OF MATTER We live at the bottom of an ocean of air – the ATMOSPHERE The highest pressures occur at the lowest altitudes. If you.
Chapter 14: The Behavior of Gases
Boyle’s Law The volume of a fixed mass of gas varies inversely with the pressure at constant temperature. PV = k P 1 V 1 = P 2 V 2 Episode 902.
The Gas Laws. INTRODUCTION TO GASES I can identify the properties of a gas. I can describe and explain the properties of a gas.
Kinetic-Molecular Theory Explains the behavior (properties) of gases (chaos) Assumes 5 things about: 1. Gas particles do not attract or repel each other.
Objectives  The Kinetic Molecular Theory of Gases  Quantities That Describe a Gas  Factors that Affect Gas Pressure  The Gas Laws.
KINETIC MOLECULAR THEORY Physical Properties of Gases: Gases have mass Gases are easily compressed Gases completely fill their containers (expandability)
Gases. What do we know? 1.Gases have mass. 2.Gases are easily compressed. 3.Gases uniformly and completely fill their containers. 4.Different gases move.
Gas Laws. Gas Pressure Pressure is defined as force per unit area. Gas particles exert pressure when they collide with the walls of their container. The.
Chapter 10 Physical Characteristics of Gases The Kinetic-Molecular Theory of Matter In the late 19 th century the Kinetic-Molecular Theory was developed.
Gases Implications of the Kinetic Molecular Theory.
Gas Laws. 1. Kinetic Molecular Theory Ideal Gases :  Gas particles do not attract or repel each other.  Gas particles are much smaller than the distances.
Chapter 14 Properties of Gases Section 14.1 The Behavior of Gases 1.
Aim: What are the properties of Gases? DO NOW: Fill in the blanks. (increase or decrease for each blank) 1. As the volume of a gas ____________, the pressure.
Objectives: correctly describe the 5 pts of kinetic molecular theory for each law: define include math expressions if appropriate generate a graph that.
Characteristics of Gases The Kinetic-Molecular Theory of Matter Pressure The Gas Laws.
 The kinetic theory assumes the following concepts about gasses are true:  Gas particles do not attract or repel each other  Gas particles are much.
Objective: To introduce the properties of gases and its factors Do Now: What are some of the properties of a gas?
Topic 13 Topic 13 Topic 13: Gases Table of Contents Topic 13 Topic 13 Basic Concepts Additional Concepts.
Properties of Gases Kinetic Molecular Theory: 1.Small particles (atoms or molecules) move quickly and randomly 2.Negligible attractive forces between particles.
GASES Unit 10. KINETIC-MOLECULAR THEORY OF GASES 1.Gases consist of tiny atoms or molecules that are in constant random motion. 2.The space between gas.
1 Behavior of Gases Ch Why do air bags work? Which would you rather hit the dashboard or an air bag? Why? Which would you rather hit the dashboard.
Math Review 1.Solve for x:2x - 3 = 1 7x + 2 = 4 4.
Chapter 12 The behavior of gases.
Robert Boyle Robert Boyle discovered that gas pressure and volume are related mathematically. The observations of Boyle and others led to the development.
Chapter 14 The Behavior of Gases.
Physical Characteristics of Gases
Presentation transcript:

Gas Laws

Gases-Review Remember: - according to the kinetic theory, all matter is composed of particles in constant motion, and pressure is caused by the force of gas particles striking the walls of their container. - the more often gas particles collide with the walls of their container, the greater the pressure. - the pressure is directly proportional to the number of particles. - at higher temperatures, the particles in a gas have greater kinetic energy, causing them to collide with the walls of the container more often and with greater force, so the pressure rises. - standard atmosphere (atm) is defined as the pressure that supports a 760-mm column of mercury. - the SI unit for measuring pressure is the pascal (Pa), named after the French physicist Blaise Pascal (1623-1662).

Kinetic-Molecular Theory Review The gas laws apply to ideal gases, which are described by the kinetic theory in the following five statements. -Gas particles do not attract or repel each other. -Gas particles are much smaller than the spaces between them. -Gas particles are in constant, random motion. -No kinetic energy is lost when gas particles collide with each other or with the walls of their container. -All gases have the same kinetic energy at a given temperature.

Boyle’s Law-Pressure & Volume Robert Boyle (1627-1691), an English scientist, used a simple apparatus to compress gases at constant temperatures, he had four findings: 1. If the pressure of a gas increases, its volume decreases proportionately. 2. If the pressure of a gas decreases, its volume increases proportionately. 3. If the volume of a gas increases, its pressure decreases proportionately. 4. If the volume of a gas decreases, its pressure increases

Boyle’s Law By using inverse proportions, all four findings can be included in one statement called Boyle’s law. -At constant temperature, the pressure exerted by a gas depends on the frequency of collisions between gas particles and the container. -If the same number of particles is squeezed into a smaller space, the frequency of collisions increases, thereby increasing the pressure. -Thus, Boyle’s law states that at constant temperature, the pressure and volume of a gas are inversely related.

Applying Boyle’s Law A sample of compressed methane has a volume of 648 mL at a pressure of 503 kPa. To what pressure would the methane have to be compressed in order to have a volume of 216 mL? Step 1: Examine the Boyle’s law equation. -You need to find P2, the new pressure, so solve the equation for P2. Step 2: Substitute known values and solve.

Boyle’s Law Practice (p 422 #1-4) The volume of a gas at 99.0kPa is 300.0mL. If the pressure is increased to 188kPa, what will the new volume be? The pressure of a sample of helium in an 1.00L container is 0.988atm. What is the new pressure of the sample is placed in a 2.00L container? Air trapped in a cylinder fitted with a piston occupies 145.7mL at 1.08atm pressure. What is the new volume of air when the pressure is increased to 1.43atm by applying force to the piston? If it takes 0.0500L of oxygen gas kept in a cylinder under pressure to fill an evacuated 4.00L reaction vessel in which the pressure is 0.980atm, what was the initial pressure of the gas?

Charles’s Law When the temperature of a sample of gas is increased and the volume is free to change, the pressure of the gas does not increase. Instead, the volume of the gas increases in proportion to the increase in Kelvin temperature. This observation is Charles’s law, which can be stated mathematically as follows.

Applying Charles’s Law A weather balloon contains 5.30 kL of helium gas when the temperature is 12°C. At what temperature will the balloon’s volume have increased to 6.00 kL? Step 1: convert the given temperature to Kelvin. Step 2: solve the Charles’s law equation for the new temperature, T2.

Applying Charles’s Law A weather balloon contains 5.30 kL of helium gas when the temperature is 12°C. At what temperature will the balloon’s volume have increased to 6.00 kL? Step 3: substitute the known values and compute the result Step 4: convert the Kelvin temperature back to Celsius. New Temperature = 323 – 273 = 50oC

Charles’s Law Practice (p 425 #6-8) A gas at 89⁰C occupies a volume of 0.67L. At what Celsius temperature will the volume increase to 1.12L? The Celsius temperature of a 3.00L sample of gas is lowered from 80.0⁰C to 30.0⁰C. What will the resulting volume be? What is the volume of the air in a balloon that occupies 0.620L at 25.0⁰C if the temperature is lowered to 0.00⁰C?

Gay-Lussac’s Law Boyle’s Law relates pressure and volume of a gas. Charles’s Law relates a gas’s temperature and volume. Gay-Lussac’s Law relates a gas’s temperature and pressure. Gay-Lussac’s Law states that the pressure of a given mass of gas varies directly with the Kelvin temperature when the volume remains constant. P1 = P2 T1 T2

Applying Gay-Lussac’s Law The pressure of a gas in a tank is 3.20atm at 22.0⁰C. If the temperature rises to 60.0⁰C, what will the be gas pressure in the tank? Step 1: obtain the temperatures in Kelvin TK = 273 + TC = 273 + 22.0 = 295K TK = 273 + TC = 273 + 60.0 = 333K Step 2: solve the Charles’s law equation for the new pressure, P2. P2 = P1 T2 T1 P1 = P2 T1 T2

Applying Gay-Lussac’s Law The pressure of a gas in a tank is 3.20atm at 22.0⁰C. If the temperature rises to 60.0⁰C, what will the be gas pressure in the tank? Step 3: substitute the known values into the equations and solve P2 = P1 T2 = (3.20atm)(333K) T1 295K = 3.61atm

Gay-Lussac’s Law Practice (p 427 #9-12) 9. A gas in a sealed container has a pressure of 125kPa at a temperature of 30.0⁰C. If the pressure in the container is increased to 201kPa, what is the new temperature? 10. The pressure in an automobile tire is 1.88atm at 25.0⁰C. What will be the pressure if the temperature warms up to 37.0⁰C? 11. Helium gas in a 2.00L cylinder is under 1.12atm of pressure. At 36.5⁰C, that same gas sample has a pressure of 2.56atm. What was the initial temperature of the gas in the cylinder? 12. If a gas sample has a pressure of 30.7kPa at 0.00 ⁰ C, by how much does the temperature have to decrease to lower the pressure to 28.4kPa?

Gas Laws Review Explain why gases such as the oxygen found in tanks used at hospitals are compressed. Why must care be taken to prevent compressed gases from reaching a high temperature? A weather balloon of known initial volume is released. The air pressures at its initial and final altitudes are known. Why can’t you find it’s new volume by using these known variables and Boyle’s Law? Determine which gas law you would use to calculate the following problem, then solve it: A gas at 20.0 ⁰ C occupies 1.00L. Assuming the pressure stays the same, what volume will it occupy at 30.0⁰C? 4. Why are baking instructions different at high altitudes than at low altitudes?