Warm, Dense Gas Near the Massive Protostar AFGL 2136 IRS 1 as Revealed by Absorption from the ν 1, ν 2, and ν 3 Bands of Water Nick Indriolo 1, David Neufeld.

Slides:



Advertisements
Similar presentations
Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Advertisements

Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Hot explosions in the cool solar atmosphere Hardi Peter Max Planck Institute for Solar System Research Göttingen H. Tian, W. Curdt, D. Schmit, D. Innes,
Lyα Pumped Molecular Hydrogen Emission in the Planetary Nebulae NGC 6853 and NGC 3132 R.E. Lupu, K. France and S.R. McCandliss Johns Hopkins University,
Studying circumstellar envelopes with ALMA
Breaking Barriers in Massive Star Formation with Stellar Interferometry Willem-Jan de Wit (ESO) Rene Oudmaijer (Leeds) Melvin Hoare (Leeds) Hugh Wheelwright.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
M. Emprechtinger, D. Lis, P. Schilke, R. Rolffs, R. Monje, The Chess Team.
Diagnostics of Inhomogeneity in the Outer Atmospheres/Winds of M Supergiants Alexander Brown Center for Astrophysics and Space Astronomy University of.
The nature of the dust and gas in the nucleus of NGC 1068.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Hydrogen Peroxide on Mars Th. Encrenaz 1, B. Bezard, T. Greathouse, M. Richter, J. Lacy, S. Atreya, A. Wong, S. Lebonnois, F. Lefevre, F. Forget 1 Observatoire.
Composition, Physical State and Distribution of Ices at the Surface of Triton Laura Brenneman ASTR688R Project, 12/9/04.
H3+H3+. Search for hot and bright stars for H 3 + spectroscopy Near the Galactic center Takeshi Oka Department of Astronomy and Astrophysics and Department.
New Results from Ground-Based Transit Spectroscopy Observations Jacob Bean Harvard-Smithsonian CfA University of Chicago.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
Adwin Boogert Geoff Blake Michiel Hogerheijde Caltech/OVRO Univ. of Arizona Tracing Protostellar Evolution by Observations of Ices.
Complex organic molecules in hot corinos
7/2/2015Richter - UC Davis1 EXES, the echelon-cross-echelle spectrograph for SOFIA Matthew J. Richter (UC Davis) with Mark McKelvey (NASA Ames Research.
Jan/2005Interstellar Ices-I1 Interstellar Ices-2 Ice Inventory Protostellar Environments Energetic Processing? Laboratory Simulations New Spitzer Satellite.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY Raquel R. Monje Darek C. Lis, Thomas Phillips, Paul F. Goldsmith Martin.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 18.
Near-IR Spectroscopy of Simple Organic Molecules in GV Tau N Dr. Erika Gibb June 19, 2014.
HH s at NIR ObservationsDiagnosis.  NKL  Trapezium  OMC1-S (L = 10 5 L o t
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Direct Physical Diagnostics of Triggered Star Formation Rachel Friesen NRAO Postdoctoral Fellow North American ALMA Science Center C. Brogan, R. Indebetouw,
Mid-IR Spectra of IRAS IRS 1 and IRS 3 M.F. Campbell 1,9,10, T.K. Sridharan 2,10, H. Beuther 3, J. H. Lacy 4, J.L. Hora 2, Q. Zhu 5, M. Kassis.
J. Cernicharo. “The interpreation H 2 O Observations” Water Vapour in Astrophysics Models and Observations FROM ISO, SWAS and ODIN TO HERSCHEL José Cernicharo.
A Cm-Wavelength Search for Pre-Biotic Molecules in Starburst Galaxies: A Case Study for Zw in Starburst Galaxies: A Case Study for Zw Minchin.
Observations of Water and other molecules in Protoplanetary Disk Atmospheres Colette Salyk UT Austin/McDonald Observatory Klaus Pontoppidan, Geoffrey Blake,
Preparatory observations VLT - VLT-ISAAC survey of ~50 Class I YSO’s -- Low resolution (R~600) L-band - Medium resolution (R~10000) M-band - Other programs.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
Observations of OH + and H 2 O + Across the Galaxy with Herschel Nick Indriolo 1, David Neufeld 1, Maryvonne Gerin 2, & PRISMAS consortium 1 – Johns Hopkins.
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Near-Infrared Spectroscopic Study of AA Tau Logan R. Brown Erika L. Gibb Nathan X. Roth University of Missouri – St. Louis.
Testing grain-surface chemistry in massive hot-core regions and the laboratory (A&A, 465, 913 and A&A submitted) Suzanne Bisschop Jes Jørgensen, Ewine.
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
EXPANDING DIFFUSE MOLECULAR GAS IN THE CENTRAL MOLECULAR ZONE OF THE GALACTIC CENTER PROBED BY H th International Symposium on Molecular Spectroscopy.
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
Analysis of OH +, H 2 O +, and H 3 + in a Diffuse Molecular Cloud Toward W51 Nick Indriolo 1, David Neufeld 1, Maryvonne Gerin 2, & Tom Geballe 3 1 – Johns.
CO Spectral Line Energy Distributions in Orion Sources: Templates for Extragalactic Observations Nick Indriolo & Ted Bergin University of Michigan June.
1 Probing MHD Shocks with high-J CO observations: W28F SOFIA Observations 1.W28 is a mature supernova remnant (>2x10 4 yr old) located in the Inner Galaxy.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
The circumstellar environment of evolved stars as seen by VLTI / MIDI Keiichi Ohnaka Max-Planck-Institut für Radioastronomie, Infrared Interferometry Group.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
Imaging a galaxy-scale molecular outflow
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Why is water interesting? Evidence of water in space Water in young disks Water in the terrestrial planet-forming zone Future prospects Water in young.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
The Near-IR Spectrum of CH3D
9-10 Aprile Osservatorio Astronomico di Capodimonte
Detection of H2O Vapor in AFGL 2591
Investigating the Cosmic-Ray Ionization Rate in the Galactic Interstellar Medium through Observations of H3+ Nick Indriolo,1 Ben McCall,1 Tom Geballe,2.
Infrared study of a star forming region, L1251B
The chemistry and stability of the protoplanetary disk surface
Fig. 1 CFHT photometry converted into spectral reflectivity obtained on UT (Universal Time) 22 and 25 October 2014, is shown in comparison to the VLT reflectivity.
Presentation transcript:

Warm, Dense Gas Near the Massive Protostar AFGL 2136 IRS 1 as Revealed by Absorption from the ν 1, ν 2, and ν 3 Bands of Water Nick Indriolo 1, David Neufeld 1, Andreas Seifahrt 2, & Matt Richter 3 1 – Johns Hopkins University 2 – University of Chicago 3 – University of California, Davis TI04

AFGL 2136 IRS 1 Murakawa et al A&A, 490, 673 de Wit et al A&A, 526, L5 0.5" (1000 AU) TI04

Observations CRIRES at VLT – high spectral resolution (3 km/s) – high signal-to-noise ratio (~500) Targeted v=1-0, R(0) line of HF – Indriolo et al. 2013, ApJ, 764, —2.52 μm (gaps between detectors) TI04

Observations TI04

Select Spectra TI04

35 absorption features 47 transitions probing 44 unique rotational levels FWHM=13.6±2.5 km/s v LSR =24.6±1.1 km/s

TI04 J=5 J=17

TI04 J=17 J=6

Rotation Diagram TI04

Model with Radiative Transfer TI04 N(H 2 O) = (1.02±0.02)×10 19 cm -2 n(H 2 ) > 5×10 9 cm -3 T = 506±25 K

Previous Water Observations ISO observations of ν 2 band – N(H 2 O) = 1.5×10 18 cm -2 – T = 500±200 K TI04 Boonman & van Dishoeck 2003, A&A, 403, 1003

Previous CO Observations TI04 Targeted v=1-0 bands of 12 CO and 13 CO near 4.7 μm using FTS on CFHT Also detected absorption lines from v=2-1 hot band of 12 CO Found both a warm and cold component – N( 12 CO) = (1.8±0.5)×10 19 cm -2 – n(H 2 ) > cm -3 – T = 580±60 K Mitchell et al. 1990, ApJ, 365, 554

Comparison of Results TI04 T (K) n(H 2 ) (cm -3 ) N(H 2 O) (cm -2 )OPRReference 506±25>5× × this work 500± × Boonman & van Dishoeck 2003 A&A, 403, 1003 N(CO) (cm -2 ) 580±60> ×10 19 N/A Mitchell et al ApJ, 363, 554 n > 5×10 9 cm -3 and T=500 K indicative of gas in inner envelope or disk Density can be a bit lower with radiative pumping Estimated path length of 1.3—13 AU Either way, gas is very close to protostar

Summary First study of water absorption in protostars in the NIR Results are consistent with warm, dense gas close to the central protostar Follow-up program has detected water absorption toward AFGL 4176 Important new probe of physical conditions in star-forming environments TI04

Future Work CRIRES observations of H 2 O & CO in AFGL 2136 are in queue and astrophysical lines will be more optimally shifted from atmospheric lines Proposed TEXES observations of pure rotational H 2 O transitions at μm EXES on SOFIA covers ν 2 band of H 2 O near 6 μm TI04