Presentation is loading. Please wait.

Presentation is loading. Please wait.

Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.

Similar presentations


Presentation on theme: "Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of."— Presentation transcript:

1 Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of protoplanetary disks

2 §1 Introduction

3 10 6 yr10 7 yr Obs. of Protoplanetary Disks SED of TTS + disk (Chiang & Goldreich 1997) Central Star Disk Star Disk (Andre et al. 1994) CTTS WTTS

4 Observations of H 2 Line Emission NIR GG Tau, TW Hya, LkCa 15, DoAr25 (v,J)=(1,3)-(0,1) by NOAO (Bary et al. 2003) MIR GG Tau, GO Tau, LkCa 15 J=2-0, J=3-1 by ISO (Thi et al. 2001) UV TW Hya 146 Lyman-band H 2 lines by HST, FUSE (Herczeg et al. 2002) etc.

5 H 2 Transition Lines UV pumping UV fluorescent line emission Infrared quandrapolar cascades v=0 UV pumping continuous fluorescence (UV) H+H radiative cascade (IR) collisional excitation, de-excitation (Shull & Beckwith 1982) UV radiation field Temperature profile Collisional process level populations

6 Irradiation from central star H 2 level transitions via UV pumping Heat gas & dust in disks Irradiation from Central Star (Chiang & Goldreich 1997) Central Star Disk Radiative transfer process Global physical disk structure (gas & dust temperature, and density profiles) H 2 level populations & line emission

7 §2 Disk Model

8 Gas Density & Temperature Hydrostatic equilibrium in z-direction ★ z x c s 2 =2kT/  m p  (x)=1.4x10 -7 s -1 (x/1AU) -3/2 (M * =0.5 M s ) M acc =10 -8 M s /yr (=const.) ・ Thermal equilibrium (  pe +L gr -  line =0)  pe : Grain photoelectric heating by FUV  line : Cooling by OI, CII & CO line excitation L gr : Energy exchange by collisions between gas and dust particles

9 Dust Temperature Local radiative equi. (abs.=reemission) 2D radiative transfer equation Short characteristic method in spherical coordinate (Dullemond & Turoulla 2000) Heating sources: (A) viscous heating at equatorial plane (B) radiation from central star

10 Stellar blackbody (T * =4000K) + Thermal bremsstrahlung (T br =2.5 x 10 4 K) UV Radiation from Central Star UV excess (Costa et al. 2000) TW Hya

11 Resulting Temperature Profile R=0.1AU 1AU 10AU with UV excesswithout UV excess R=0.1AU 1AU 10AU Disk surface heated up by photoelectric heating Midplane & Outer disk (without UV excess) gas temp. = dust temp.

12 §3 H 2 Level Populations

13 H 2 Level Populations Statistical Equilibrium u, B 1  u +, C 1  u m, X 1  g + l, X 1  g + UV  lm UV  ml A ml C ml C lm H+H R diss,l H+H R form,l E m >E l

14 Resulting Level Populations R=0.1AU 10AU with UV excesswithout UV excess with UV excess or Inner disk (hot) : LTE collisional process, n upper : large Outer disk without UV excess (cold) : non-LTE UV pump. & cascade, n upper : small R=0.1AU 10AU v=0 v=1 v=2 v=3 v=4 v=0 v=1 v=2 v=3 v=4

15 v=1-0 S(1) (@2.12  m) Obs.(Bary et al.’03) with UVe without UVe (1.0 - 15) x 10 -15 9.3 x 10 -15 3.3 x 10 -18 Observer I ul S ul §4 Resulting H 2 Line Emission IR [ erg/cm -2 /s ] e.g., v=1-7 R(3) (@1489.6A) Obs.(Herczeg with with UVe without et al.’02) UVe + Ly  UVe 4.8 x 10 -14 1.4 x 10 -14 1.3 x 10 -16 4.0 x 10 -22 UV with UV excess:UV: n u : I ul : with UV excess:T gas : n u : I ul : [ erg/cm -2 /s ]

16 §5 Discussion

17 Dustless Disk Model Planet formation Dustless disk model Dustless disk : no infrared excess Conserv. of dust mass & dust size growth amount of small dust SED

18 Resulting Temperature Profile R=0.1AU 1AU 10AU R=0.1AU 1AU 10AU DustyDustless Dustless (n dust /n gas : small) grain photoelectric heating T gas with UV excess

19 Resulting Level Populations R=0.1AU 10AU v=0 v=1 v=2 v=3 v=4 DustyDustless with UV excess Outer region of dustless disk (cold) : non-LTE UV pump. & cascade n upper : large UV radiation fields dust absorption R=0.1AU 10AU v=0 v=1 v=2 v=3 v=4

20 Resulting H 2 Line Emission v=1-0 S(1) (@2.12  m): Obs.(Bary et al.’03) Dusty Dustless (1.0 - 15) x 10 -15 9.3 x 10 -15 6.5 x 10 -16 S(0) (@28.2  m), S(1) (@17.0  m): Obs.(Thi et al.’01) Dusty Dustless S(0) (2.5 – 5.7) x 10 -14 4.2 x 10 -17 9.3 x 10 -17 S(1) (2.8 – 8.1) x 10 -14 8.5 x 10 -16 5.0 x 10 -16 UV (@900A-2900A) Obs.(Herczeg et al.’02) Dusty Dustless (1.2 - 73) x 10 -15 3.8 x 10 -15 1.2 x 10 -14 [ erg/cm -2 /s ] Obs. possibility to detect H 2 emission from dustless disks in NIR & UV

21 §6 Summary UV excess + Radiative transfer process Gas & dust temperature, density profiles Gas temperature@disk surface: ~2,000K Grain photoelectric heating H 2 level populations : LTE, n upper : large Strong NIR H 2 lines : consistent with obs. collisional excitation (hot gas) Strong UV H 2 lines : consistent with obs. pumping by Ly  emission H 2 emission from dustless disks

22


Download ppt "Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of."

Similar presentations


Ads by Google