Applied Physics Lecture 14 Electricity and Magnetism Magnetism

Slides:



Advertisements
Similar presentations
Magnetic Force Acting on a Current-Carrying Conductor
Advertisements

Magnetism and Currents. A current generates a magnetic field. A magnetic field exerts a force on a current. Two contiguous conductors, carrying currents,
Lecture 8 Examples of Magnetic Fields Chapter 19.7  Outline Long Wire and Ampere’s Law Two Parallel Contours Solenoid.
1 My Chapter 19 Lecture Outline. 2 Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle.
Lecture Demos: E-40 Magnetic Fields of Permanent Magnets (6A-1) E-41 Oersted’s Experiment (6B-1) E-42 Force on a Moving Charge (6B-2) 6B-3 Magnetic Field.
Chapter 22 Magnetism AP Physics B Lecture Notes.
Chapter 20 Magnetism.
Magnetism Review and tid-bits. Properties of magnets A magnet has polarity - it has a north and a south pole; you cannot isolate the north or the south.
Electromagnets April. Electricity vs. Magnetism ElectricityMagnetism + and -North and South Electric field, E caused by electric charges, stationary or.
Ch 20 1 Chapter 20 Magnetism © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New.
Magnetism! Chapter 19.
Chapter 32 Magnetic Fields.
Chapter 22 Magnetism.
Ampere’s Law Physics 102 Professor Lee Carkner Lecture 19.
Ampere’s Law Physics 102 Professor Lee Carkner Lecture 19.
Physics Department, New York City College of Technology
Ampere’s Law Physics 102 Professor Lee Carkner Lecture 18.
Physics 152 Magnetism Walker, Chapter B Field Outside a Wire Earlier we said that magnetic fields are created by moving charges. A current in a.
Electromagnet. Wire Field  A moving charge generates a magnetic field. Symmetry with experiencing force Perpendicular to direction of motion Circles.
Sources of Magnetic Field
Chapter 30 - Magnetic Fields and Torque
 Magnets can be created one of two ways: Naturally found in the Earth. They are called lodestones. It is permanently magnetized. Using electricity to.
Magnetic Field and Magnetic Forces
Lecture Outline Chapter 19 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
When a current-carrying loop is placed in a magnetic field, the loop tends to rotate such that its normal becomes aligned with the magnetic field.
Chapter 19 Magnetism 1. Magnets 2. Earth’s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel.
Chapter 19 (part 2) Magnetism. Hans Christian Oersted 1777 – 1851 Best known for observing that a compass needle deflects when placed near a wire carrying.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 22 Physics, 4 th Edition James S. Walker.
Review Problem Review Problem Review Problem 3 5.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
Announcements WebAssign HW Set 6 due this Friday Problems cover material from Chapters 19 Estimated course grades available on e-learning My office hours.
Lecture 16 Magnetism (3) History 1819 Hans Christian Oersted discovered that a compass needle was deflected by a current carrying wire Then in 1920s.
Chapter 19 Magnetism. General Physics Review – Magnetic Fields ELECTRIC FIELDS From (+) to (–) charges Field lines (electric flux) Start / End at charges.
The wires are separated by distance a and carry currents I 1 and I 2 in the same direction. Wire 2, carrying current I 2, sets up a magnetic field B 2.
A permanent magnet has a north magnetic pole and a south magnetic pole. Like poles repel; unlike poles attract.
Chapter 20 Magnetism. Units of Chapter 20 Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic.
Magnetic Forces and Magnetic Fields
1 Chapter 19: Magnetism The nature of magnetism Iron ore found near Magnesia Compass needles align N-S: magnetic Poles North (South) Poles attracted to.
Ch Magnetic Forces and Fields
Chapter 19: Magnetism Magnets  Magnets Homework assignment : 18,25,38,45,50 Read Chapter 19 carefully especially examples.
Chapter 20 Magnetism Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
22.7 Source of magnetic field due to current
Magnetism: Force and Field. General Characteristics Like poles repel Unlike poles attract You can never isolate a north pole from a south pole. N S N.
Lecture 28: Currents and Magnetic Field: I
Forces on Current Carrying Wires in Magnetic Fields Chapter 19 Herriman High School - AP Physics 2.
Physics 102: Lecture 9, Slide 1 Currents and Magnetism Physics 102: Lecture 09.
A permanent magnet has a north magnetic pole and a south magnetic pole. Like poles repel; unlike poles attract.
Ph126 Spring 2008 Lecture #8 Magnetic Fields Produced by Moving Charges Prof. Gregory Tarl é
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Chapter 20 Magnetism Magnetism 20 Phy 2054 Lecture Notes.
Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted – Two poles, called north and south Like poles repel each.
PHY 102: Lecture Magnetic Field 6.2 Magnetic Force on Moving Charges 6.3 Magnetic Force on Currents 6.4 Magnetic Field Produced by Current.
Physics Chapter 21: Magnetism. ☺Magnets ☺Caused by the Polarization of Iron Molecules ☺Material Containing Iron (Fe)
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Physics 102: Lecture 8, Slide 1 Magnetism Physics 102: Lecture 08 This material is NOT on exam 1!
Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract. If you cut a magnet in half, you don’t get a north pole.
Chapter 24 Magnetic Fields.
PHY 102: Lecture Magnetic Field
Magnetic Forces & Fields
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Magnetic Forces and Fields
General Physics (PHY 2140) Lecture 15 Electricity and Magnetism
General Physics (PHY 2140) Lecture 13 Electricity and Magnetism
19.7 Magnetic Fields – Long Straight Wire
General Physics (PHY 2140) Lecture 14 Electricity and Magnetism
General Physics (PHY 2140) Lecture 8 Electricity and Magnetism
Magnetism.
Electromagnetism.
Chapter 19 Magnetism.
Presentation transcript:

Applied Physics Lecture 14 Electricity and Magnetism Magnetism Ampere’s law Applications of magnetic forces Chapter 19 4/26/2017

19.7 Motion of Charged Particle in magnetic field Bin Consider positively charge particle moving in a uniform magnetic field. Suppose the initial velocity of the particle is perpendicular to the direction of the field. Then a magnetic force will be exerted on the particle… ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ F v q r Where is it directed? … and make it follow a circular path. Remember that 4/26/2017

The magnetic force produces a centripetal acceleration.   The particle travels on a circular trajectory with a radius: 4/26/2017

Example 1 : Proton moving in uniform magnetic field A proton is moving in a circular orbit of radius 14 cm in a uniform magnetic field of magnitude 0.35 T, directed perpendicular to the velocity of the proton. Find the orbital speed of the proton. Given: r = 0.14 m B = 0.35 T m = 1.67x10-27 kg q = 1.6 x 10-19 C Recall that the proton’s radius would be Thus Find: v = ? 4/26/2017

19.8 Magnetic Field of a long straight wire Danish scientist Hans Oersted (1777-1851) discovered (somewhat by accident) that an electric current in a wire deflects a nearby compass needle. In 1820, he performed a simple experiment with many compasses that clearly showed the presence of a magnetic field around a wire carrying a current. I=0 I 4/26/2017

Magnetic Field due to Currents The passage of a steady current in a wire produces a magnetic field around the wire. Field form concentric lines around the wire Direction of the field given by the right hand rule. If the wire is grasped in the right hand with the thumb in the direction of the current, the fingers will curl in the direction of the field (second right-hand rule). Magnitude of the field I 4/26/2017

Magnitude of the field I r B mo called the permeability of free space 4/26/2017

Ampere’s Law Consider a circular path surrounding a current, divided in segments Dl, Ampere showed that the sum of the products of the field by the length of the segment is equal to mo times the current. Andre-Marie Ampere I r Dl B 4/26/2017

Consider a case where B is constant and uniform: Then one finds: 4/26/2017

l d 1 2 F1 B2 I1 I2 Force per unit length 4/26/2017

Definition of the SI unit Ampere Used to define the SI unit of current called Ampere. If two long, parallel wires 1 m apart carry the same current, and the magnetic force per unit length on each wire is 2x10-7 N/m, then the current is defined to be 1 A. 4/26/2017

Example 1: Levitating a wire Two wires, each having a weight per units length of 1.0x10-4 N/m, are strung parallel to one another above the surface of the Earth, one directly above the other. The wires are aligned north-south. When their distance of separation is 0.10 mm what must be the current in each in order for the lower wire to levitate the upper wire. (Assume the two wires carry the same current). l 1 I1 2 d I2 4/26/2017

mg/l = 1.0x10-4 N/m F1 1 I1 B2 mg/l 2 d I2 l Two wires, each having a weight per units length of 1.0x10-4 N/m, are strung parallel to one another above the surface of the Earth, one directly above the other. The wires are aligned north-south. When their distance of separation is 0.10 mm what must be the current in each in order for the lower wire to levitate the upper wire. (Assume the two wires carry the same current). 1 I1 B2 mg/l 2 d I2 l Weight of wire per unit length: mg/l = 1.0x10-4 N/m Wire separation: d=0.1 m I1 = I2 4/26/2017

19.10 Magnetic Field of a current loop Magnetic field produced by a wire can be enhanced by having the wire in a loop. Dx1 I B Dx2 4/26/2017

19.11 Magnetic Field of a solenoid Solenoid magnet consists of a wire coil with multiple loops. It is often called an electromagnet. 4/26/2017

Solenoid Magnet ali.riaz@uettaxila.edu.pk Field lines inside a solenoid magnet are parallel, uniformly spaced and close together. The field inside is uniform and strong. The field outside is non uniform and much weaker. One end of the solenoid acts as a north pole, the other as a south pole. For a long and tightly looped solenoid, the field inside has a value: 4/26/2017

Solenoid Magnet n = N/l : number of (loop) turns per unit length. I : current in the solenoid. 4/26/2017

Example: Magnetic Field inside a Solenoid. Consider a solenoid consisting of 100 turns of wire and length of 10.0 cm. Find the magnetic field inside when it carries a current of 0.500 A. N = 100 l = 0.100 m I = 0.500 A 4/26/2017

Comparison: Electric Field vs. Magnetic Field Electric Magnetic Source Charges Moving Charges Acts on Charges Moving Charges Force F = Eq F = q v B sin(q) Direction Parallel E Perpendicular to v,B Field Lines Opposites Charges Attract Currents Repel 4/26/2017