Controls on particle settling velocity and bed erodibility in the presence of muddy flocs and pellets as inferred by ADVs, York River estuary, Virginia,

Slides:



Advertisements
Similar presentations
Hydrodynamics and Sediment Transport Modelling Ramiro Neves
Advertisements

Dual Use of a Sediment Mixing Tank for Calibrating Acoustic Backscatter and Direct Doppler Measurement of Settling Velocity (and Related Field Motivation.
Aero-Hydrodynamic Characteristics
G. M. Cartwright, C. T. Friedrichs, and L. P. Sanford.
LANDSAT Aug 31, 2011 Sediment transport and deposition: salinity fronts and storm events David Ralston, Rocky Geyer, John Warner, Gary Wall Hudson River.
Abstract We quantified turbulent dissipation in the Raritan river using both conventional methods and a novel technique, the structure function method.
Suspended particle property variation in Gaoping Submarine Canyon Ray T. Hsu and James T. Liu Institute of Marine Geology and Chemistry, National Sun Yat-sen.
Useful texts: Mann & Lazier, The Dynamics of Marine Ecosystems, Blackwell Science. Simpson, In: The Sea, vol 10, chapter 5. Simpson, In: The Sea, vol 11,
Particle Settling Velocity Put particle in a still fluid… what happens? Speed at which particle settles depends on: particle properties: D, ρ s, shape.
Examples of secondary flows and lateral variability.
Outline of Presentation: Richardson number control of saturated suspension Under-saturated (weakly stratified) sediment suspensions Critically saturated.
15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS
(Geyer & Traykovski, 2001) Modeling of Clinoforms Created By Wave/Current Supported Gravity Flows: Carl Friedrichs, Virginia Institute of Marine Science,
Scaling Up Marine Sediment Transport Patricia Wiberg University of Virginia The challenge: How to go from local, event-scale marine sediment transport.
Predictability of Seabed Change due to Underwater Sand Mining in Coastal Waters of Korea Predictability of Seabed Change due to Underwater Sand Mining.
Conference Call Summary Three solids classes –Clay settles at 5 m/d –Silt settles at 50 m/d –Sand settles at 1000 m/d Major recommendation was use formulae.
Annapolis: July 18, 2006 Outline of talk: Objective: Improve BBL in 3D model. Estimates of shear stress. Evaluate bottom boundary layer.
ADDED VALUE OF COMBINING MULTIPLE OPTICAL AND ACOUSTIC INSTRUMENTS WHEN CHARACTERIZING FINE-GRAINED ESTUARINE SUSPENSIONS Grace M. Cartwright 1, Carl T.
RELATIONSHIPS BETWEEN ERODIBILITY AND FINE-GRAINED SEABED PROPERTIES ON TIDAL TO SEASONAL TIME-SCALES, YORK RIVER ESTUARY, VA Lindsey M Kraatz, Carl T.
Outline Recent Field Observations of Cohesive and Mixed Sediment Particle Properties in Estuarine and Coastal Environments Carl Friedrichs, Virginia Institute.
Suspended Load Above certain critical shear stress conditions, sediment particles are maintained in suspension by the exchange of momentum from the fluid.
Controls on Suspended Particle Properties and Water Clarity along a Partially-Mixed Estuary, York River Estuary, Virginia, USA Kelsey A. Fall 1, Carl T.
Wind waves and sediments Calm Stephen Monismith Jeremy Bricker, Satoshi Inagaki, and Nicole Jones Stanford University Windy Supported by UPS Foundation.
What Controls Bed Erodibility in Muddy, Partially-Mixed Tidal Estuaries? Carl Friedrichs, Grace Cartwright, Bob Diaz, Pat Dickhudt, Kelsey Fall, Lindsey.
Virginia Institute of Marine Science
Josh Bearman, Carl Friedrichs, Bruce Jaffe, Amy Foxgrover
Controls on particle settling velocity and bed erodibilty in the presence of muddy flocs and pellets as inferred by ADVs, York River estuary, Virginia,
LECTURE 8 LAYER-AVERAGED GOVERNING EQUATIONS FOR TURBIDITY CURRENTS
Basic Hydrology Water Quality: Sediment production and transport.
Conclusions References Acknowledgments Sensitivity Tests Cohesive Sediment Model Modeling System Future Work Including Cohesive Sediment Processes in the.
Modelling 1: Basic Introduction. What constitutes a “model”? Why do we use models? Calibration and validation. The basic concept of numerical integration.
Spring-neap Variation in Fecal Pellet Properties within Surficial Sediment of the York River Estuary Emily Wei VIMS REU Prospectus Presentation Mentor:
Factors affecting sedimentation rates of a tidally influenced salt marsh in Plum Island Sound, MA McDonald Lee Advisor: Dr. Carl Friedrichs Graduate Assistant:
Evaluating the Capabilities of the Second Generation PICS Settling Column Floc Camera in a Muddy Tidal Estuary, York River, Virginia, USA Grace M. Cartwright,
Flow Energy PE + KE = constant between any two points  PE (loss) =  KE (gain) Rivers are non-conservative; some energy is lost from the system and can.
Formation of Estuarine Turbidity Maxima in partially mixed estuaries H.M. Schuttelaars 1,2, C.T. Friedrichs 3 and H.E. de Swart 1 1: Institute for Marine.
Controls on particle settling velocity and bed erodibilty in the presence of muddy flocs and pellets as inferred by ADVs, York River estuary, Virginia,
Waves and resuspension on the shoals of San Francisco Bay Jessie Lacy USGS-CMG.
Simulation of Summertime Wind Speed at Turbine Hub Height: Model Sensitivities to Speed and Shear Characteristics Shannon L. Rabideau, Daniel A. Rajewski,
Controls on particle settling velocity and bed erodibilty in the presence of muddy flocs and biologically packaged pellets: Modeling study utilizing the.
General Description of coastal hydrodynamic model.
 These two agents: erosion and deposition are the most important agents that affect weathered materials.  Erosion involves the physical removal of weathered.
15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410.
Controls on Suspended Particle Properties and Water Clarity along a Partially-Mixed Estuary, York River Estuary, Virginia Kelsey A. Fall 1, Carl T. Friedrichs.
Outline of Presentation: Tidal sediment transport due to spatial vs. flood/ebb asymmetries (1) Minimizing spatial asymmetry → predicts channel convergence.
Outline of Presentation: Richardson number influence on coastal/estuarine mixing Derivation of stratified “overlap” layer structure Under-saturated (weakly.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Satellite Observation and Model Simulation of Water Turbidity in the Chesapeake.
Learning objectives To understand why the Hjulstrom curve is a logarithmic graph To interpret the Hjulstrom curve.
Fine sediment transport. Fines Till derived soils (e.g., Clarion) ~ 45-70% fines Alluvial soils (e.g., Coland) 65-80% fines Loess-derived soils ~ > 80%
Controls on sediment availability on the continental shelf and implications for rates of morphologic evolution Patricia Wiberg University of Virginia with.
Sedimentology Flow and Sediment Transport (1) Reading Assignment: Boggs, Chapter 2.
ETM: The Estuarine Turbidity Maximum
An introduction to cohesive sediment transport processes
An introduction to cohesive sediment transport modelling
Channel Processes and Hjulstrom’s Curve
Controls on Suspended Particle Properties and Water Clarity along a Partially-Mixed Estuary, York River Estuary, Virginia Kelsey A. Fall 1, Carl T. Friedrichs.
Influence of Suspended Particle Properties on Optical Properties and Resultant Water Clarity along a Partially-Mixed Estuary, York River, Virginia, USA.
Flocs of increasing size Suspended Sediment Size Distribution in a Numerical Sediment Transport Model for a Partially-Mixed Estuary Danielle R.N. Tarpley,
L. Donelson Wright1, Arthur C. Trembanis1, Malcolm O. Green2, Terry M
Controls on Suspended Particle Properties and Water Clarity along a Partially-Mixed Estuary, York River Estuary, Virginia Kelsey A. Fall1, Carl T. Friedrichs1,
Comparison of modeled and observed bed erodibility in the York River estuary, Virginia, over varying time scales Danielle Tarpley, Courtney K. Harris,
Sediment Transport Mechanics
Consolidation and stratification within a Muddy, Partially Mixed Estuary: A Comparison between Idealized and Realistic Models for Sediment Transport in.
4 channel types defined at reach scale, based on 3 features
4 channel types defined at reach scale, based on 3 features
Exercise 1: Fenton River Floodplain Exercise
Title and Outline VIMS Coastal Hydrodynamics and Sediment Dynamics Lab
OCEAN/ESS Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons)
SETTLING AND SEDIMENTATION.
Presentation transcript:

Controls on particle settling velocity and bed erodibility in the presence of muddy flocs and pellets as inferred by ADVs, York River estuary, Virginia, USA Kelsey Fall*, Carl Friedrichs, and Grace Cartwright Virginia Institute of Marine Science

Motivation: Determine fundamental controls on sediment settling velocity and bed erodibility in muddy estuaries Physical-biological gradient found along the York estuary : -- In the middle to upper York River estuary, disturbance by sediment transport reduces macrobenthic activity, and sediment layering is often preserved. (e.g., Clay Bank – “Intermediate Site”) -- In the lower York and neighboring Chesapeake Bay, layering is often destroyed by bioturbation. (e.g., Gloucester Point – “Biological Site”) -- NSF MUDBED project ADV tripods provide long-term observations within a strong physical-biological gradient. Study site: York River Estuary, VA (X-rays courtesy of L. Schaffner) Schaffner et al., /11

ADV at deployment -- ADVs often provide quality long-term data sets despite extensive biofouling. -- ADVs provide continual long-term estimates of: Suspended mass concentration (c) from acoustic backscatter Bed Stress (τ b ): ρ* Bulk Settling Velocity (w sBULK ): /c set Erodibility (ε) given by ε = τ b /M, where M is depth-integrated C ADV after retrieval Observations provided by an Acoustic Doppler Velocimeter Sensing volume ~ 35 cmab (Photos by C. Cartwright) Fugate and Friedrichs,2002; Friedrichs et al., 2009; Cartwright, et al and Dickhudt et al., /11

Biological site Generally < 1 kg/m 2 /Pa Intermediate site ε varies from ~ 3 kg/m 2 /Pa (Regime 1) to ~ 1 kg/m 2 /Pa (Regime 2) ε (kg/m 2 /Pa) Seasonal Variability in bulk settling velocity (W sBULK ) and bed erodibility (ε) is observed at the Intermediate Site. 3-day mean of ε from fits to M = ε τ b using ADVs Biological site W sBULK ~1 mm/s Intermediate site W sBULK varies from ~ 0.5 mm/s (Regime 1) to ~ 1 mm/s (Regime 2) 3- day Mean W sBULK from fits to = W sBULK using ADVs W sBULK (mm/s) Cartwright et al., /11

Biological site Generally < 1 kg/m 2 /Pa Intermediate site ε varies from ~ 3 kg/m 2 /Pa (Regime 1) to ~ 1 kg/m 2 /Pa (Regime 2) ε (kg/m 2 /Pa) 3-day mean of ε from fits to M = ε τ b using ADVs Biological site W sBULK ~1 mm/s Intermediate site W sBULK varies from ~ 0.5 mm/s (Regime 1) to ~ 1 mm/s (Regime 2) 3- day Mean W sBULK from fits to = W sBULK using ADVs W sBULK (mm/s) Cartwright et al., 2009 What is happening at Intermediate Site when Regime 1  Regime 2? 3/11

W sBULK = / (mm/s) (a) Sediment Bulk Settling Velocity, W sBULK Phase-Averaged Settling Velocity for Two Regimes Regime 1 Regime 2 Increasing |u| and τ b Tidal Velocity Phase (  ) Similar W sBULK at the beginning of tidal phase suggest presence of flocs during both regimes Regime 1: Flocs -Lower observed W sBULK at peak |u| and τ b (<0.8 mm/s) Regime 2: Pellets+Flocs -Higher observed W sBULK at peak |u| and τ b (~1.2 mm/s) -Influence of pellets on W sBULK 7/11 (Note that Bulk Settling Velocity, w sBULK = /c set is considered reliable for mud only during accelerating half of tidal cycle.)

Tidal Analysis highlights differences in Regime 1 and Regime 2. Tidal Velocity Phase (θ/π) Increasing IuI Decreasing IuI (b) Bed Stress (Pa) (d) Concentration (mg/L) (c) Drag Coefficient C WASH (a) Tidal Current Speed (cm/s) Tidal Velocity Phase (θ/π) Increasing IuI Decreasing IuI 5/11

(a) Tidal Current Speed (cm/s) Tidal Analysis highlights differences in Regime 1 and Regime 2. Tidal Velocity Phase (θ/π) Increasing IuI Decreasing IuI (b) Bed Stress (Pa) (d) Concentration (mg/L) (c) Drag Coefficient C WASH Regime 1: Flocs -High C at relatively low τ b -Lower ADV derived Cd (more stratified water column) -Lower τ b despite higher similar current speeds Regime 1 Tidal Velocity Phase (θ/π) Increasing IuI Decreasing IuI 5/11

(a) Tidal Current Speed (cm/s) Tidal Analysis highlights differences in Regime 1 and Regime 2. Tidal Velocity Phase (θ/π) Increasing IuI Decreasing IuI (b) Bed Stress (Pa) (d) Concentration (mg/L) (c) Drag Coefficient C WASH Regime 1: Flocs -High C at relatively low τ b -Lower ADV derived C d (more stratified water column) -Lower τ b despite higher similar current speeds Regime 2: Pellets+Flocs -Lower C at high τ b -Increase in C d (Water column less stratified) Regime 2 Tidal Velocity Phase (θ/π) Increasing IuI Decreasing IuI 5/11

Concentration (mg/L) (a)(b) Hysteresis plots of C vs.  b for the top 20 % of tidal cycles with the strongest  b for (a) Regime 1 and (b) Regime 2. τ cDEP flocs = ~ 0.08 Pa Washload (~20%) Flocs (~80%) Washload (~20%) Flocs (~50%) Pellets (~30%) Bed Stress (Pa) Concentration (mg/L) τ cDEP flocs = ~ 0.08 Pa τ cINT = ~ 0.05 Pa τ cINT = ~ 0.02 Pa Regime 1 Regime 2 -- Once  b increases past a critical stress for initiation (  cINIT ), C continually increases for both Regime 1 and for Regime 2 Erosion -- As  b decreases for Regime 1, C does not fall off quickly until  b ≤ 0.08 Pa, suggests that over individual tidal cycles, cohesion of settling flocs to the surface of the seabed is inhibited for τ b larger than ~ 0.08 Pa. -- As  b decreases for Regime 2, C decreases more continually, suggesting pellets without as clear a  cDEP. But the decline in C accelerates for  b ≤ ~ 0.08 Pa, suggesting (i) a transition to floc deposition and (ii) that settling C component is ~ 3/8 pellets, ~ 5/8 flocs. Deposition 6/11

W sBULK = / (mm/s) (a) Sediment Bulk Settling Velocity, W sBULK Phase-Averaged Settling Velocity for Two Regimes Regime 1 Regime 2 Increasing |u| and τ b Tidal Velocity Phase (  ) Similar W sBULK at the beginning of tidal phase suggest presence of flocs during both regimes Regime 1: Flocs -Lower observed W sBULK at peak |u| and τ b (<0.8 mm/s) Regime 2: Pellets+Flocs -Lower observed W sBULK at peak |u| and τ b (~1.2 mm/s) -Influence of pellets on W sBULK 7/11 (Note that Bulk Settling Velocity, w sBULK = /c set is considered reliable for mud only during accelerating half of tidal cycle.)

W sBULK = / (mm/s) W sDEP = (c/(c-c wash ))*W sBULK (mm/s) Analysis of W sBULK by removing C WASH and solving for settling velocity of the depositing component (W sDEP ) during increasing  b allows separate estimates for settling velocities of flocs (W sFLOCS ) and pellets (W sPELLETS ). (a) Sediment Bulk Settling Velocity, W sBULK (b) Phase-Averaged Settling Velocity for Two Regimes Remove c wash Regime 1 Regime 2 Tidal Velocity Phase (  ) Regime 1 Regime (b) Depositing component of Settling Velocity, W sDEP Increasing |u| and τ b 8/11 Recall: peak τ b ~ 0.15 Pa for Regime 1, and peak τ b ~ 0.22 Pa for Regime 2

W sBULK = / (mm/s) W sDEP = (c/(c-c wash ))*W sBULK (mm/s) Analysis of W sBULK by removing C WASH and solving for settling velocity of the depositing component (W sDEP ) during increasing  b allows separate estimates for settling velocities of flocs (W sFLOCS ) and pellets (W sPELLETS ). (a) Sediment Bulk Settling Velocity, W sBULK (b) Phase-Averaged Settling Velocity for Two Regimes Remove c wash Regime 1 Regime 2 Tidal Velocity Phase (  ) Regime 1 Regime (b) Depositing component of Settling Velocity, W sDEP Increasing |u| and τ b W sFLOC = ~ 0.85 mm/s Implies floc size is limited by settling-induced shear rather than  b. W sDEP = W sFLOCS 8/11 Recall: peak τ b ~ 0.15 Pa for Regime 1, and peak τ b ~ 0.22 Pa for Regime 2

W sBULK = / (mm/s) W sDEP = (c/(c-c wash ))*W sBULK (mm/s) Analysis of W sBULK by removing C WASH and solving for settling velocity of the depositing component (W sDEP ) during increasing  b allows separate estimates for settling velocities of flocs (W sFLOCS ) and pellets (W sPELLETS ). (a) Sediment Bulk Settling Velocity, W sBULK (b) Phase-Averaged Settling Velocity for Two Regimes Remove c wash Regime 1 Regime 2 Tidal Velocity Phase (  ) Regime 1 Regime (b) Depositing component of Settling Velocity, W sDEP Increasing |u| and τ b W sDEP = W sFLOCS W sDEP = f F W sFLOCS + f F W sPELLETS = ~ 1.5 mm/s at peak  b Assume: f F = 5/8, f P = 3/8 This gives: W sPELLETS = ~ 2 mm/s 8/11 W sFLOC = ~ 0.85 mm/s Implies floc size is limited by settling-induced shear rather than  b. Recall: peak τ b ~ 0.15 Pa for Regime 1, and peak τ b ~ 0.22 Pa for Regime 2

25 or 120 Hour Averaged Bed Stress (Pa) 25 Hour Averaged Erodibility, (kg/m 2 /Pa) Daily-averaged erodibility is correlated either to 5-Day-averaged  b (Regime 1) or to daily-averaged  b (Regime 2), revealing two distinct relationships between ε and  b. Regime 1: Erodibility ( ε ) increases proportional to the average stress over the last 5 days, consistent with cohesive bed evolution dominated by the consolidation state of flocs. Regime 2: Erodibility ( ε ) decreases with greater stress, possibly associated with the effects of bed armoring by the pellet component. Influence of Stress History on Bed Erodibility for Two Regimes Regime 1 Regime 2 9/11

Summary and Future Work: York River sediment settling velocity (W s ) and erodibility (ε) are described by two contrasting regimes: (i) Regime 1: a period dominated by muddy flocs [lower W s, higher ε]. (ii) Regime 2: a period characterized by pellets mixed with flocs [higher W s, lower ε]. Tidal phase-averaging of ADV records for the strongest 20% of tides for June to August 2007 reveals: A non-settling wash load (C WASH ) is always present during both Regimes. Once stress (τ b ) exceeds an initial critical value (τ cINIT ) of ~ 0.02 to 0.05 Pa, sediment concentration (C) continually increases with τ b for both Regimes. As τ b decreases, cohesion of settling flocs to the surface of the seabed is inhibited for τ b larger than ~ 0.08 Pa for both Regimes. Subtraction of C WASH from W SBULK for Regime 1 results in a stable floc settling velocity of W sFLOC ≈ 0.85 mm/s. The constant floc settling velocity implies that floc size is limited by settling- induced shear rather than turbulence associated with bed stress. Separation of W sFLOC and C WASH from W SBULK for Regime 2 finally yields W SPELLET ≈ 2 mm/s. During Regime 1, ε increases with  b averaged over the previous 5 days, consistent with cohesive bed evolution; while for Regime 2, ε decreases with daily  b, perhaps consistent with bed armoring. Future work will include (i) vertically stacked ADVs and (ii) deployment of a high-definition particle settling video camera. 10/11

Acknowledgements Marjy Friedrichs Tim Gass Wayne Reisner Funding: Julia Moriarity Carissa Wilkerson Questions? 11/11