Diluted Magnetic Semiconductors

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

A.V. Koudinov, Yu. G. Kusrayev A.F. Ioffe Physico-Technical Institute St.-Petersburg, Russia L. C. Smith, J. J. Davies, D. Wolverson Department.
Coherently induced ferromagnetism in Diluted Magnetic Semiconductors Southampton, OCES9-SCES2 September 7 st 2005 Joaquín Fernández-Rossier Dept. Física.
Optical properties of infrared emission quaternary InGaAsP epilayers Y. C. Lee a,b, J. L. Shen a, and W. Y. Uen b a. Department of Computer Science and.
Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.” Hole concentration.
Diluted Magnetic Semiconductors Diluted Magnetic Semoconductor (DMS) - A ferromagnetic material that can be made by doping of impurities, especially transition.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
1. INTRODUCTION: QD MOLECULES Growth Direction VERTICAL MOLECULES LATERAL MOLECULES e-h+e-h+ 1. Electron states coupling (e - Tunneling ) 2. Hole states.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
Single Spin Detection J. Fernández-Rossier IUMA, Universidad de Alicante, Spain Manipulation and Measurement of the Quantum State of a single spin in a.
Liang He, Lei Ma, and Frank Tsui
Spin effects in diluted magnetic semiconductors M. Vladimirova, P. Barate, S. Cronenberger, F. Teppe and D. Scalbert, Groupe d'Etude des Semi-conducteurs,
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
3/22/05APS Meeting Los Angeles1 Magneto-optical properties of excitons confined to single magnetic and non-magnetic quantum dots Supported by NSF.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
School of Physics and Astronomy, University of Nottingham, UK
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
A. Abdi, T. B. Hoang, S. Mackowski, L. M. Smith and H. E. Jackson Department of Physics, University of Cincinnati, Ohio J. M. Yarrison-Rice.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Sputtered ZnO based DMS thin films for nanoscale spintronics devices Background & Introduction The wurtzite transparent semiconductor ZnO was predicted.
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Quantum Dots: Confinement and Applications
Modeling of Energy States of Carriers in Quantum Dots
Quantum Dots in Photonic Structures
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Solar Cells, Sluggish Capacitance, and a Puzzling Observation Tim Gfroerer Davidson College, Davidson, NC with Mark Wanlass National Renewable Energy Lab,
Study on the Diluted Magnetic Semiconductors QSRC, Dongguk University
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
Photoacoustic Spectroscopy of Surface Defects States of Semiconductor Samples 1) M.Maliński, 2) J.Zakrzewski, 2) F.Firszt 1) Department of Electronics.
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
Dynamics of collective spin excitations in n-doped CdMnTe quantum wells M. Vladimirova, P. Barate, S. Cronenberger, D. Scalbert Groupe d'Etude des Semi-conducteurs,
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
Photoluminescence-excitation spectra on n-type doped quantum wire
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Aronzon B.A. PRB, 84, (2011) Rylkov V.V. Tugushev V.V. Nikolaev S.N. .
전이금속이 포함된 GaN의 전자구조 및 자기적 특성해석
Growth and optical properties of II-VI self-assembled quantum dots
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
MRS, 2008 Fall Meeting Supported by DMR Grant Low-Frequency Noise and Lateral Transport Studies of In 0.35 Ga 0.65 As/GaAs Studies of In 0.35 Ga.
Nano and Giga Challenges in Microelectronics, Cracow, 2004 Spin Injection in Semiconductor Nanostructures Alexey Toropov Ioffe Institute, St.Petersburg,
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
Substrate dependence of self-assembled quantum dots
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
II-VI Semiconductor Materials, Devices, and Applications
Small internal electric fields in quaternary InAlGaN heterostructures S.P. Łepkowski 1, P. Lefebvre 2, S. Anceau 1,2, T. Suski 1, H. Teisseyre 1, H. Hirayama.
Read: Chapter 2 (Section 2.3)
Quantum Dot Lasers ASWIN S ECE S3 Roll no 23.
Presentation transcript:

Diluted Magnetic Semiconductors David Ferrand Equipe mixte CNRS-CEA-UJF “Nanophysique et semiconducteurs” Laboratoire de Spectrométrie Physique, BP 87 38402 Saint Martin d’Hères

Injection and manipulation of spins in semiconductors Electrical spin injection, spin transport, tunnel structure M. Kohda et al, Jpn. J. Appl. Phys., Part 2 40, L1274 (2001) R. Mattana et al, Phys Rev Lett, 90 166601 (2003) Kroutvar et al., Nature 432,81 (2004) Spin manipulation

Outline I : Spins localized in II-VI heterostructures 1. Modulation doped heterostructures : II-VI Ferromagnetic quantum wells 2. CdTe quantum dots doped with a single Mn atom II : High band gap diluted magnetic semiconductors GaMnN/ZnCoO ZnCrTe 1. GaMnN, ZnCoO 2. ZnCrTe

Isoelectronic element II-VI semimagnetic heterostructures I II Valence mixte I, II, III… III IV V VI VII VIII H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn II Cd0.7Mg0.3Te Magnetic alloys : Cd1-xMnxTe, Zn1-xMnxTe Mn : 4s2 3d5 With a large Mn solubility up to 75% S=5/2 localized spins Isoelectronic element Almost perfect semiconducting properties L CdTe Cd0.7Mg0.3Te Cd0.88Zn0.12Te substrate CdTe/CdMgTe quantum wells ZnTe CdTe CdTe ZnTe ZnTe substrate CdTe/ZnTe quantum dots

Magnetic properties : Short range antiferromagnetic interactions J2, J3~0.5K N.N pairs J1~20K J. Furdyna et al, JAP 64 R29 (1988) kT << J1 0,0 0,1 0,2 0,3 0,4 0,5 0,00 0,01 0,02 0,03 0,04 0,05 Mn content x xeff Small concentration of free spins Studies at low temperatures with diluted alloys

p type modulation doped CdMnTe QWs Surface doped CdMnTe QW 15 nm < z < 60 nm After surface oxydation Mn Compositions 0-11% Hole densities 1-2 1011 cm-2 W. Maslana, 2003 Magnetic quantum well Cd(1-x)MnxTe 80 Å spacer Barrier Substrate CdMgTe 2D hole gas Nitrogen E1 HH1 80 Å Mn Compositions 0-4% Hole densities 1-3 1011 cm-2

+ - s+ s- b~-100 meV nm3 < 0 a~25 meV nm3 > 0 N0~few 1022 cm-3 Magneto-optical spectroscopy : Giant Zeeman effect b~-100 meV nm3 < 0 a~25 meV nm3 > 0 Holes : Electrons : E1 ±1/2 +1 z Photon -1 HH HH Excitons ±3/2 HH -1 HH +1 Excitons G.S s+ s- N0a~0.2 eV N0b~-1 eV N0~few 1022 cm-3 T=1.9K Xhh B=+4 T + -

Susceptibility measurements : Curie Weiss temperature PL at 2.1K, 2.4% Mn, 1.61011 cm-2 Haury et al, 1997 Interactions ferromagnétiques induite par le gaz 2D Tcw ~ 2 à 3 K > 0 Tcw~-TAF=-2K < 0 Coll. P. Kossacki, Warsaw

Electrical control through an electrostatic gate V QW barriers p doped n doped undoped H. Boukari et al, Phys. Rev. Lett. 88, 207204 (2002) Tc Hole gas depleted

Comparison with mean field model predictions 2D D.O.S Kossacki 2001 X 2.3 4% Mn Effective Mn content : xeff TC > TCW ? T. Dietl, Warsaw

Magnetic CdMnTe/ZnTe QDs Strained induced CdTe/ZnTe QDs: UHV-AFM image of CdTe QDs on ZnTe. "Stranski-Krastanow" h > hcSK 3D-coherent islands QDs density: 1010 cm-2 Size: d=25nm, h=3nm (Lz<<Lx,Ly) TEM C. Bougerol. Introduction of Mn atoms (3d5 4s2 ) carrying S=5/2 localized spin Thèse L Maingault, H. Mariette

CdTe/ZnTe QDs doped with a single Mn atom Single dot spectroscopy : Mn density = QDs density Strained induced Cd(Mn)Te/ZnTe QDs: Mn segregation during the growth of a spacer layer Thèse L Maingault, H. Mariette 100 mm Strained induced QDs To study in detail the magnetic interaction between a single ion and indivual carriers in a zero dimensional system we realized QDs with a low density of Mn magnetic ions. Take advantage of the intermixing of Mn during the growth…. Introduce individual spins in QDs: seggregation of Mn during the growth of a ZnTe spacer layer on a ZnMnTe layer Sparce distribution of Mn at the surface when you start the growth of the CdTe QD layer Target the same density of Mn and QDs Introduce Mn in QDs, but random distribution of spins and QDs. To access the optical properties of individual QDs … Thèse Y. Léger

Reference CdTe/ZnTe QDs B=0 B=0 -1 Electron : s=1/2 Anisotropic hole Jz=3/2 z Jz=±3/2 // Oz s=1/2 Growth axis +1 +1 ±1 -1 G.S. L. Besombes et al., Phys. Rev. Lett. 93, 207403 (2004)

Individual Mn-doped CdTe/ZnTe QDs 6 twofold degenerate excitonics levels Total splitting 1.3 meV S=5/2 CdTe QDs with an individual Mn spin Thèse Y. Léger

Exciton-Mn Exchange Coupling S=5/2 Complexe X - Mn : s=1/2 + Jz=3/2 + S=5/2 Mn2+ e h e h Jz = -1 -5/2 Jz = +1 +5/2 X -3/2 +3/2 -1/2 +1/2 +1/2 -1/2 +3/2 -3/2 e h Jz = -1 +5/2 e h -5/2 Jz = +1 ) 3 ( 2 5 Mn h e I - Overall splitting : Ie-Mn=-70 meV and Ih-Mn =350 meV. Detection and manipulation of a single Mn spin

Mn-Doped Individual QDs Under Magnetic Field Splitting of the six exciton lines. Diamagnetic shift. Changes in the PL intensity distribution. Large anticrossing for five of the exciton lines around 6T. Additional tiny anticrossings. NMn=0 NMn=1

II : High band gap diluted magnetic semiconductors GaMnN/ZnCoO 2. ZnCrTe I II Valence mixte I, II, III… III IV V VI VII VIII H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn II-VI : Cr2+ : 4s2 3d4 Co2+ : 4s2 3d7 III-V Mn 4s2 3d5 Acceptor : GaMnAs 3d5 Isoelectronic : 3d4

Tc>300K Towards room temperature diluted magnetic semiconductors ? 2001 2002 (Ga,Mn)N MBE 3-6% Mn (Zn,Co)O : PLD 15-25% Co Tc>300K S. Sonoda et al. J.A.P. 156, 555 (2002) K. Ueda et al, APL 79 988 (2001) (Zn,Cr)Te MBE 0< x < 50% H. Saito et al, 2003 2003

3d4 3d7 e t2 E E e t2 D.O.S Cr2+ in II-VI Co2+ in ZnO Mn3+ in III-V High temperature ferromagnetism still controversial : Paramagnetism + Ferromagnetism observed by SQUID ZnCrTe No phase diagram with the magnetic ion composition or correlation with other parameters - Transport properties weakly sensitive to magnetic ions Tunnel junctions with (Zn,Co)O No sharp optical features close to band edges No photoluminescence Diluted high band gap alloys : GaMnN, ZnCoO e t2 BV BC E D.O.S Partially filled d bands located within the gap ? Cr2+ in II-VI Mn3+ in III-V 3d4 E BV BC e t2 Co2+ in ZnO 3d7 Ferromagnetism mediated by electrons ?

Zn1-xCoxO or Ga1-xMnxN e t2 E D.O.S < 3d5 c - axis WURTZITE epilayer c - axis Buffer Grown by Molecular Beam Epitaxy: in CREHA Valbonne (Zn1-xCoxO) C. Deparis, C. Mohrhain in Grenoble (Ga1-xMnxN) Al2O3 substrate e t2 < 3d5 BV BC E D.O.S

Co2+ Mn3+ Magneto-optical spectroscopy of intraionic d-d transitions (Ga,Mn)N : 0.03% Mn (Zn,Co)O 2% Co Spin forbidden transition at 1876 meV W. Pacuski et al, Phys. Rev. B 73 035214 (2006) Mn3+ 3d4 Tetrahedral crystal field Co2+ 3d7 5T2 5E 2E S=3/2 4F 5D S=2 Isoelectronic spins Spin allowed transition at 1413 meV S. Marcet et al, cond-mat/0604025 2006 4A2

Ground state : Fine structure Hamiltonian parameters S. Marcet et al, cond-mat/0604025 2006 g//=1.91 gperp =1.98 Axial anisotropy : D=0.27 meV g//=2.28 Axial anisotropy : D=0.35 meV Axial anisotropy :

Evolution with of the magnetic ion concentration Ga1-xMnxN Zn1-xCoxO Co2+ incorporation up to 6% W. Pacuski et al, Phys. Rev. B 73 035214 (2006) Mn3+ incoporation up to about 1%

Comparison with the magnetic properties Ga1-xMnxN S. Marcet, Thèse Grenoble, 11/2005 Zn1-xCoxO No ferromagnetism observed up to 10% Ferromagnetism observed for PLD samples 1.7% Mn Ferromagnetism observed for 6% Mn : Tc~5K R. Galera, Lab. L. Néel, Grenoble 6%

Exchange interactions with carriers Energy CB A B s+ s- VB x = 0.1% A B C ∆Eshift = 6meV xMn = 0.004 <Sz> = 2 N0(α-β) =-1.2 eV N0|α-β|=0.8 eV xMn = 0.004 ∆Eshift = 1 meV

Conclusion - II-VI Heterostructures : - Carrier induced in CdMnTe quantum wells : Modulation doping or surface doping CdTe quantum dots doped with a single Mn ions : Manipulation and detection of a single spins - High gap DMS : - High temperature ferromagnetism still controversial GaMnN : Incorporation of isoelectronic Mn3+ ions : 3d4 Ferromagnetic exchange with holes Ferromagnetism observed at low temperature ZnCoO : Incorporation of Co2+ isoelectronic ions Paramagnetic behavior observed up to 10% Co spin carrier exchange smaller than in GaMnN

- Equipe mixte CEA-CNRS-UJF Grenoble, France L. Besombes, E. Bellet, Y. Biquard, J. Cibert, D. Halley, D. Ferrand, R. Giraud, S. Kuruda, E. Sarigianidou, H. Mariette Y. Leger, S. Marcet, L. Maingault, W. Pacuski, A. Titov - Lab. L. Néel, France, Grenoble R. Galera, M. Amara, B. Barbara, J. Cibert Polish academy of science, IFPAN, Warsaw, Poland M. Sawicki, J. Jaroszynsky, S. Kolesnik, T. Dietl - Université de Varsovie, Pologne W. Maslana, W. Pacuski, P. Kossacki, J Gaj E. Gheraeert, LEPES, Grenoble C. Deparis, C. Mohrain, CRHEA Valbonne K. Rode, M. Anane UMP CNRS-Thales, Orsay A. Dinia, E. Beaurepaire, M. Gallart, P. Gilliot IPCMS, Strasbourg, France - Institute of Materials Science, University of Tsukuba, Japan S. Marcet,. N. Nishizawa, T. Kumekawa, N. Ozaki, S. Kuroda and K. Takita