Chapter - Continuous Control

Slides:



Advertisements
Similar presentations
PID Controllers and PID tuning
Advertisements

Discrete Controller Design
1 The 2-to-4 decoder is a block which decodes the 2-bit binary inputs and produces four output All but one outputs are zero One output corresponding to.
CHE 185 – PROCESS CONTROL AND DYNAMICS
Objectives Control Terminology Types of controllers –Differences Controls in the real world –Problems –Response time vs. stability.
Chapter 12. Direct Synthesis ( G includes G m, G v ) 1. Specify closed-loop response (transfer function) 2. Need process model, (= G P G M G V ) 3. Solve.
3442 Industrial Instruments 2 Chapter 9 Controller Principles
CHE 185 – PROCESS CONTROL AND DYNAMICS
CHE 185 – PROCESS CONTROL AND DYNAMICS
CHE 185 – PROCESS CONTROL AND DYNAMICS PID CONTROL APPLIED TO MIMO PROCESSES.
Feedback Controllers Chapter 8
Lab2: A self balancing platform v.9b1 Laboratory 2 A self balancing platform.
Chapter Summer 2. Comparator 3. Block Blocks in Series
Chapter 11 1 Closed-Loop Responses of Simple Control Systems In this section we consider the dynamic behavior of several elementary control problems for.
Finding a free maximum Derivatives and extreme points Using second derivatives to identify a maximum/minimum.
Remote Automations Solutions RTU – The Glue Remote Control of Valves.
Chapter 8. The PID Controller Copyright © Thomas Marlin 2013
12/6/04BAE Advanced Embedded Systems Design Lecture 14 Implementation of a PID controller BAE Fall 2004 Instructor: Marvin Stone Biosystems.
Review Regression and Pearson’s R SPSS Demo
Chapter 7 PID Control.
Electronic Devices Ninth Edition Floyd Chapter 13.
Operational Amplifiers David Lomax Azeem Meruani Gautam Jadhav.
10/13/2004EE 42 fall 2004 lecture 191 Lecture #19 amplifier examples: comparators, op amps. Reminder: MIDTERM coming up one week from today (Monday October.
Proportional/Integral/Derivative Control
Automatic Control System
Process Control: Designing Process and Control Systems for Dynamic Performance Chapter 20. Multiloop Control – Relative Gain Analysis Copyright © Thomas.
DYNAMIC BEHAVIOR AND STABILITY OF CLOSED-LOOP CONTROL SYSTEMS
1 Lab 5: Controls and feedback. 2 Lab 5: Control and Feedback This embedded system uses the Photo sensor to detect the light intensity of the environment.
Chapter 8 Model Based Control Using Wireless Transmitter.
Power PMAC Tuning Tool Overview. Power PMAC Servo Structure Versatile, Allows complex servo algorithms be implemented Allows 2 degree of freedom control.
Proportional Integral Differential (PID) Control
Fundamentals of Electric Circuits Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Click to edit Master title style Click to edit Master text styles Second level Third level Fourth level Fifth level 1 UNITRONICS D erivative P I roportional.
Objectives Discuss final project deliverables Control Terminology
Chapter 9 Wireless Model Predictive Control. MPC Simulation of Measurement Value on Detection of Bad Status Detection  In many recent MPC designs a similar.
PID. The proportional term produces an output value that is proportional to the current error value. Kp, called the proportional gain constant.
PID CONTROLLERS By Harshal Inamdar.
SELF TUNING OF CONTROLLERS What is a Controller Controller is an active element or device that receives the information from the measurements and takes.
Industrial Electronic Department Copyright of German Malaysian Institute. All rights reserved.
ERT 210/4 Process Control Hairul Nazirah bt Abdul Halim Office: CHAPTER 8 Feedback.
Block diagram reduction
ENTC 395 Lecture 7a. Today 4 PID control –Overview –Definitions –Open loop response 4 Example –SIMULINK implementation.
Properties of Functions. First derivative test. 1.Differentiate 2.Set derivative equal to zero 3.Use nature table to determine the behaviour of.
Topic 4 Controller Actions And Tuning. Chemical Processes Self-regulating Process Dynamics SS Gain, Kp Deadtime, θ Lag, τ Integrating Process Dynamics.
Feedback Controllers Chapter 8
Review. Feedback Terminology In Block diagrams, we use not the time domain variables, but their Laplace Transforms. Always denote Transforms by (s)!
CHAPTER VI BLOCK DIAGRAMS AND LINEARIZATION
P&ID Diagram for Design Field Instruments – D.O. Probe.
TUTORIAL EKT 308 Computer Network. Question 1 1. a) Differentiate between open loop and closed loop control systems. b) Explain positive features of feedback.
Do-more Technical Training Instruction Set (Analog/Process)
1 PID Feedback Controllers PID 反馈控制器 Dai Lian-kui Shen Guo-jiang Institute of Industrial Control, Zhejiang University.
Heat to air update August 9th, 2017.
Process Control & Instrumentation MAPUA INSTITUTE OF TECHNOLOGY
Chapter 7 The Root Locus Method The root-locus method is a powerful tool for designing and analyzing feedback control systems The Root Locus Concept The.
Automatic control systems I
What is an Op-Amp Low cost integrating circuit consisting of:
Introduction to PID control
CHAPTER VI BLOCK DIAGRAMS AND LINEARIZATION
Digital Control Systems Waseem Gulsher
Basic Design of PID Controller
PID and PIDE Getting Started Guide for ControlLogix and CompactLogix
Control System Instrumentation
Course PEF3006 Process Control Fall 2018 PID Control
DirectLOGIC PID Setup and troubleshooting of a PID loop. BEGIN SETUP
Feedback Controllers Chapter 8
Control Systems Prof Swanson MECH 3550.
Outline Control structure design (plantwide control)
A Tutorial Overview Proportional Integral Derivative.
Control System and Transfer Function
Control Systems Prof Swanson MECH 3550.
Presentation transcript:

Chapter - Continuous Control Examples

A Feedback Controller

Continuous Feedback - Logical Output

Ladder Logic Example

Block Diagram

An Example

Continuous Feedback and Output

Proportional Control Equations

Modeling Behavior with Differential Equations

Implementing the controller in ladder logic

Proportional Integral Differential (PID) Control

PID Control With Ladder Logic

PID CONTROL AND STATUS BITS pid.CTL:DINT pid.EN:BOOL - the PID function is enabled and running pid.PVT:BOOL - pid.DOE:BOOL - 0=d/dtPV; 1=d/dtError pid.SWM:BOOL - 0 = automatic, 1 = manual pid.MO:BOOL pid.PE:BOOL - 0=independent PID eqn; 1=dependent pid.NDF:BOOL - 0=no derivative smoothing; 1=derivative smoothing pid.NOBC:BOOL - 0=no bias calculation, 1=yes pid.NOZC:BOOL - 0=no zero crossing calculation; 1=yes pid.INI:BOOL - 0=not initialized; 1=initialized pid.SPOR:BOOL - 0=setpoint not out of range, 1=within pid.OLL:BOOL - 0=above minimum CV limit; 1=outside pid.OLH:BOOL - 0=below maximum CV limit; 1=inside pid.EWD:BOOL - 0=error outside deadband; 1=error inside pid.DVNA:BOOL - 0=ok; 1=Error is below lower limit pid.DVPA:BOOL - 0=ok; 1=Error is above upper limit pid.PVLA:BOOL - 0=ok; 1=PV is below lower limit pid.PVHA:BOOL - 0=ok; 1=PV is above upper limit

PID CONTROL REALS pid.SP:REAL – setpoint pid.KP:REAL - proportional gain pid.KI:REAL - integral gain pid.KD:REAL - derivative gain pid.BIAS:REAL - feed forward bias pid.MAXS:REAL - maximum scaling pid.MINS:REAL - minimum scaling pid.DB:REAL - deadband pid.SO:REAL - set output percentage pid.MAXO:REAL - maximum output limit percentage pid.MINO:REAL - minimum output limit percentage pid.UPD:REAL - loop update time in seconds pid.PV:REAL - scaled PV value pid.ERR:REAL - scaled Error value pid.OUT:REAL - scaled output value pid.PVH:REAL - process variable high alarm pid.PVL:REAL - process variable low alarm pid.DVP:REAL - positive deviation alarm pid.DVN:REAL - negative deviation alarm pid.PVDB:REAL - process variable deadband alarm pid.DVDB:REAL - error alarm deadband pid.MAXI:REAL - maximum PV value pid.MINI:REAL - minimum PV value pid.TIE:REAL - tieback value for manual control pid.MAXCV:REAL - maximum CV value pid.MINCV:REAL - minimum CV value pid.MINTIE:REAL - maximum tieback value pid.MAXTIE:REAL - minimum tieback value pid.DATA:REAL[17] - temporary and workspace (e.g. integration sums)‏ PID CONTROL REALS