Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Acids and Bases Chapter 13.
Advertisements

Reactions in Aqueous Solution Chapter 4 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Section 18.1: Calculations involving Acids and Bases Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
1 Acids and Bases. 2 Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals to produce.
Acids and Bases Chapter and Br Ø nstead Acids and Br Ø nstead Bases Recall from chapter 4: Recall from chapter 4: –Br Ø nstead Acid-
Acid-Base Equilibria Chapter 16. HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Weak Acids (HA) and Acid Ionization Constants HA (aq) H + (aq) + A - (aq)
Acid-Base Equilibria Chapter 16.
Acids and Bases Chapter 15
Acid-Base Equilibria Chapter 16. Acids 1.Have a sour taste. e.g., Vinegar, lemons, limes, sour milk 2.Cause litmus to change from blue to red. 4. Acid.
I. Introduction to Acids & Bases Acids & Bases. A. Properties  electrolytes  turn litmus red  sour taste  react with metals to form H 2 gas  slippery.
Acids and Bases Section 8.4: K w and the pH scale Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Titrations.
Acids and Bases Chapter 15.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
I. Introduction to Acids & Bases
1 The Chemistry of Acids and Bases. 2 Acids and Bases.
Chapter 13: Acids & Bases “The end is near” The Arrhenius and Bronsted- Lowry Theories of Acids and Bases A. Properties of Acids and Bases –1. Acids.
Acid and Base Equilibrium. Some Properties of Acids Produce H 3 O + ions in water (the hydronium ion is a hydrogen ion attached to a water molecule) Taste.
HNO 3, HCl, HBr, HI, H 2 SO 4 and HClO 4 are the strong acids. Strong and Weak Acids/Bases The strength of an acid (or base) is determined by the amount.
Chapter 15 Acids and Bases
Chapter Arrhenius Concept: Acids produce H + in solution, bases produce OH  ion. In aqueous solutions. Brønsted-Lowry: Acids are H + donors, bases.
Weak Acids & Weak Bases. Review Try the next two questions to see what you remember Try the next two questions to see what you remember.
THE CHEMISTRY OF ACIDS AND BASES. ACID AND BASES.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Characteristics of Acids: Table K  Electrolytes  pH scale: less than 7  Litmus: RED  Phenolphthelein: colorless  Contains a high concentration of.
Chapter 19: Acids and Bases Sections 19.1 to 19.4.
1 Properties of Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals to produce.
1 Acids, Bases and PH. 2 Some Properties of Acids þ Produce H + (as H 3 O + ) ions in water (the hydronium ion is a hydrogen ion attached to a water molecule)
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 14 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
CHM 112 Summer 2007 M. Prushan Chapter 15 Aqueous Equilibrium – Acids and Bases.
Acids and Bases Acids and bases Acid-base properties of water (K w ) pH scale Strength of Acids and Bases Weak acid (K a ) Weak base (K b ) Relation between.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
I. Introduction to Acids & Bases Acids & Bases. A. Properties  electrolytes  turn litmus red  sour taste  react with metals to form H 2 gas  slippery.
The Chemistry of Acids and Bases. Acid and Bases.
Acids and Bases Lesson 1 Acid & Base Properties (Strong & Weak acids)
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Updates Midterms marked; solutions are posted Assignment 03 is in the box Assignment 04 is up on ACME and is due Mon., Feb. 26 (in class)

Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Ch 16. I. Properties of Acids and Bases A. Acids –1. Taste sour (think lemons: citric acid) –2. React with metals to produce hydrogen.
Acids & Bases. Acids and Bases an Introduction A. Properties of Acids and Bases –1. Acids Ionize when put into water React with active metals (Group I,
An electrolyte is a substance that, when dissolved in water, results in a solution that can conduct electricity. A nonelectrolyte is a substance that,
Acids and Bases. Acid Properties Sour taste (citrus fruits) Sour taste (citrus fruits) Conduct electric current Conduct electric current Change the color.
Prentice-Hall © 2007 General Chemistry: Chapter 16 Slide 1 of 52 Philip Dutton University of Windsor, Canada Prentice-Hall © 2007 CHEMISTRY Ninth Edition.
Acids and Bases Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 15 Acids and Bases. Some Properties of Acids þ Produce H + (_______) ions in water (the ________ ion is a hydrogen ion attached to a water molecule)
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
I. Introduction to Acids & Bases Acids & Bases. A. Properties  electrolytes  turn blue litmus red  sour taste  react with metals to form H 2 gas 
Chapter Fifteen Acids and Bases. Chapter Fifteen/ Acids and Bases acids is a substances that ionize in water to produce H + ions HCl (aq) → H + (aq) +
University Chemistry Chapter 11: Acids and Bases Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Chapter 11: Acids and Bases
Acids and Bases Chapter 15 & 16.
Acids and Bases.
The Chemistry of Acids and Bases
Acids and Bases Chapter 16.
Acids and Bases Chapter 15
15.4 What is the pH of a 2 x 10-3 M HNO3 solution?
Acids and Bases Chapter 15
Acids & Bases.
Presentation transcript:

Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15.1 Bronsted Acids and Bases 15.2 The Acid-Base Properties of Water 15.3 pH-A measure of Acidity 15.4 Strength of Acids and Bases 15.5 Weak Acids and Acid Ionization Constants 15.6 Weak Bases and Base Ionization Constants

15.1 Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals to produce hydrogen gas. React with carbonates and bicarbonates to produce carbon dioxide gas Have a bitter taste. Feel slippery. Many soaps contain bases. Bases 15.1

Arrhenius acid is a substance that produces H + (H 3 O + ) in water Arrhenius base is a substance that produces OH - in water 15.1

15.1 Bronsted Acids and Bases A Brønsted acid is a proton donor A Brønsted base is a proton acceptor acidbaseacidbase 15.1 acid conjugate base base conjugate acid

O H H+ O H H O H HH O H - + [] The Acid-Base Properties of Water H 2 O (l) H + (aq) + OH - (aq) H 2 O + H 2 O H 3 O + + OH - acid conjugate base base conjugate acid 15.2 autoionization of water

H 2 O (l) H + (aq) + OH - (aq) The Ion Product of Water K c = [H + ][OH - ] [H 2 O] [H 2 O] = constant K c [H 2 O] = K w = [H + ][OH - ] The ion-product constant (K w ) is the product of the molar concentrations of H + and OH - ions at a particular temperature. At 25 0 C K w = [H + ][OH - ] = 1.0 x [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic 15.2

What is the concentration of OH - ions in a HCl solution whose hydrogen ion concentration is 1.3 M? K w = [H + ][OH - ] = 1.0 x [H + ] = 1.3 M [OH - ] = KwKw [H + ] 1 x = = 7.7 x M 15.2

15.3 pH – A Measure of Acidity pH = - log [H + ] [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic [H + ] = 1 x [H + ] > 1 x [H + ] < 1 x pH = 7 pH < 7 pH > 7 At 25 0 C pH[H + ] 15.3

pOH = -log [OH - ] [H + ][OH - ] = K w = 1.0 x log [H + ] – log [OH - ] = pH + pOH = 14.00

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was What is the H + ion concentration of the rainwater? pH = - log [H + ] [H + ] = 10 -pH = = 1.5 x M The OH - ion concentration of a blood sample is 2.5 x M. What is the pH of the blood? pH + pOH = pOH = -log [OH - ]= -log (2.5 x )= 6.60 pH = – pOH = – 6.60 =

15.4 Strength of Acids and Bases Strong Electrolyte – 100% dissociation NaCl (s) Na + (aq) + Cl - (aq) H2OH2O Weak Electrolyte – not completely dissociated CH 3 COOH CH 3 COO - (aq) + H + (aq) Strong Acids are strong electrolytes HCl (aq) + H 2 O (l) H 3 O + (aq) + Cl - (aq) HNO 3 (aq) + H 2 O (l) H 3 O + (aq) + NO 3 - (aq) HClO 4 (aq) + H 2 O (l) H 3 O + (aq) + ClO 4 - (aq) H 2 SO 4 (aq) + H 2 O (l) H 3 O + (aq) + HSO 4 - (aq) 15.4

HF (aq) + H 2 O (l) H 3 O + (aq) + F - (aq) Weak Acids are weak electrolytes HNO 2 (aq) + H 2 O (l) H 3 O + (aq) + NO 2 - (aq) HSO 4 - (aq) + H 2 O (l) H 3 O + (aq) + SO 4 2- (aq) H 2 O (l) + H 2 O (l) H 3 O + (aq) + OH - (aq) Strong Bases are strong electrolytes NaOH (s) Na + (aq) + OH - (aq) H2OH2O KOH (s) K + (aq) + OH - (aq) H2OH2O Ba(OH) 2 (s) Ba 2+ (aq) + 2OH - (aq) H2OH2O 15.4

F - (aq) + H 2 O (l) OH - (aq) + HF (aq) Weak Bases are weak electrolytes NO 2 - (aq) + H 2 O (l) OH - (aq) + HNO 2 (aq) Conjugate acid-base pairs: The conjugate base of a strong acid has no measurable strength. H 3 O + is the strongest acid that can exist in aqueous solution. The OH - ion is the strongest base that can exist in aqeous solution. 15.4

Strong AcidWeak Acid 15.4

What is the pH of a 2 x M HNO 3 solution? HNO 3 is a strong acid – 100% dissociation. HNO 3 (aq) + H 2 O (l) H 3 O + (aq) + NO 3 - (aq) pH = -log [H + ] = -log [H 3 O + ] = -log(0.002) = 2.7 Start End M 0.0 M What is the pH of a 1.8 x M Ba(OH) 2 solution? Ba(OH) 2 is a strong base – 100% dissociation. Ba(OH) 2 (s) Ba 2+ (aq) + 2OH - (aq) Start End M M0.0 M pH = – pOH = log(0.036) =

HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Weak Acids (HA) and Acid Ionization Constants HA (aq) H + (aq) + A - (aq) K a = [H + ][A - ] [HA] K a is the acid ionization constant KaKa weak acid strength 15.5

What is the pH of a 0.5 M HF solution (at 25 0 C)? HF (aq) H + (aq) + F - (aq) K a = [H + ][F - ] [HF] = 7.1 x HF (aq) H + (aq) + F - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx K a = x2x x = 7.1 x Ka  Ka  x2x = 7.1 x – x  0.50 K a << 1 x 2 = 3.55 x x = M [H + ] = [F - ] = M pH = -log [H + ] = 1.72 [HF] = 0.50 – x = 0.48 M 15.5

When can I use the approximation? 0.50 – x  0.50 K a << 1 When x is less than 5% of the value from which it is subtracted. x = M 0.50 M x 100% = 3.8% Less than 5% Approximation ok. What is the pH of a 0.05 M HF solution (at 25 0 C)? Ka  Ka  x2x = 7.1 x x = M M 0.05 M x 100% = 12% More than 5% Approximation not ok. Must solve for x exactly using quadratic equation or method of successive approximation. 15.5

Solving weak acid ionization problems: 1.Identify the major species that can affect the pH. In most cases, you can ignore the autoionization of water. Ignore [OH - ] because it is determined by [H + ]. 2.Use ICE to express the equilibrium concentrations in terms of single unknown x. 3.Write K a in terms of equilibrium concentrations. Solve for x by the approximation method. If approximation is not valid, solve for x exactly. 4.Calculate concentrations of all species and/or pH of the solution. 15.5

What is the pH of a M monoprotic acid whose K a is 5.7 x ? HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx K a = x2x x = 5.7 x Ka  Ka  x2x = 5.7 x – x  K a << 1 x 2 = 6.95 x x = M M M x 100% = 6.8% More than 5% Approximation not ok. 15.5

K a = x2x x = 5.7 x x x – 6.95 x = 0 ax 2 + bx + c =0 -b ± b 2 – 4ac  2a2a x = x = x = HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx [H + ] = x = M pH = -log[H + ] =

percent ionization = Ionized acid concentration at equilibrium Initial concentration of acid x 100% For a monoprotic acid HA Percent ionization = [H + ] [HA] 0 x 100% [HA] 0 = initial concentration 15.5

NH 3 (aq) + H 2 O (l) NH 4 + (aq) + OH - (aq) Weak Bases and Base Ionization Constants K b = [NH 4 + ][OH - ] [NH 3 ] K b is the base ionization constant KbKb weak base strength 15.6 Solve weak base problems like weak acids except solve for [OH-] instead of [H + ].

15.6