Presentation is loading. Please wait.

Presentation is loading. Please wait.

Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Similar presentations


Presentation on theme: "Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display."— Presentation transcript:

1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 Arrhenius acid is a substance that produces H + (H 3 O + ) in water Arrhenius base is a substance that produces OH - in water 4.3

3 If it can be both acid and base then… …it is amphiprotic. HCO 3  HSO 4  H 2 O © 2012 Pearson Education, Inc.

4 A Brønsted acid is a proton donor A Brønsted base is a proton acceptor acidbaseacidbase 15.1 acid conjugate base base conjugate acid

5 Conjugate Acids and Bases The term conjugate comes from the Latin word “conjugare,” meaning “to join together.” Reactions between acids and bases always yield their conjugate bases and acids. © 2012 Pearson Education, Inc.

6 Acid and Base Strength Strong acids are completely dissociated in water. –Their conjugate bases are quite weak. Weak acids only dissociate partially in water. –Their conjugate bases are weak bases. © 2012 Pearson Education, Inc.

7 O H H+ O H H O H HH O H - + [] + Acid-Base Properties of Water H 2 O (l) H + (aq) + OH - (aq) H 2 O + H 2 O H 3 O + + OH - acid conjugate base base conjugate acid 15.2 autoionization of water

8 H 2 O (l) H + (aq) + OH - (aq) The Ion Product of Water K c = [H + ][OH - ] [H 2 O] [H 2 O] = constant K c [H 2 O] = K w = [H + ][OH - ] The ion-product constant (K w ) is the product of the molar concentrations of H + and OH - ions at a particular temperature. At 25 0 C K w = [H + ][OH - ] = 1.0 x 10 - 14 [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic 15.2

9 What is the concentration of OH - ions in a HCl solution whose hydrogen ion concentration is 1.3 M? K w = [H + ][OH - ] = 1.0 x 10 - 14 [H + ] = 1.3 M [OH - ] = KwKw [H + ] 1 x 10 -14 1.3 = = 7.7 x 10 -15 M 15.2

10 pH – A Measure of Acidity pH = - log [H + ] [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic [H + ] = 1 x 10 -7 [H + ] > 1 x 10 -7 [H + ] < 1 x 10 -7 pH = 7 pH < 7 pH > 7 At 25 0 C pH[H + ] 15.3

11 pOH = -log [OH - ] [H + ][OH - ] = K w = 1.0 x 10 -14 -log [H + ] – log [OH - ] = 14.00 pH + pOH = 14.00

12 The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the H + ion concentration of the rainwater? pH = - log [H + ] [H + ] = 10 -pH = 10 -4.82 = 1.5 x 10 -5 M The OH - ion concentration of a blood sample is 2.5 x 10 -7 M. What is the pH of the blood? pH + pOH = 14.00 pOH = -log [OH - ]= -log (2.5 x 10 -7 )= 6.60 pH = 14.00 – pOH = 14.00 – 6.60 = 7.40 15.3

13 Strong Electrolyte – 100% dissociation NaCl (s) Na + (aq) + Cl - (aq) H2OH2O Weak Electrolyte – not completely dissociated CH 3 COOH CH 3 COO - (aq) + H + (aq) Strong Acids are strong electrolytes HCl (aq) + H 2 O (l) H 3 O + (aq) + Cl - (aq) HNO 3 (aq) + H 2 O (l) H 3 O + (aq) + NO 3 - (aq) HClO 4 (aq) + H 2 O (l) H 3 O + (aq) + ClO 4 - (aq) H 2 SO 4 (aq) + H 2 O (l) H 3 O + (aq) + HSO 4 - (aq) 15.4

14 HF (aq) + H 2 O (l) H 3 O + (aq) + F - (aq) Weak Acids are weak electrolytes HNO 2 (aq) + H 2 O (l) H 3 O + (aq) + NO 2 - (aq) HSO 4 - (aq) + H 2 O (l) H 3 O + (aq) + SO 4 2- (aq) H 2 O (l) + H 2 O (l) H 3 O + (aq) + OH - (aq) Strong Bases are strong electrolytes NaOH (s) Na + (aq) + OH - (aq) H2OH2O KOH (s) K + (aq) + OH - (aq) H2OH2O Ba(OH) 2 (s) Ba 2+ (aq) + 2OH - (aq) H2OH2O 15.4

15 F - (aq) + H 2 O (l) OH - (aq) + HF (aq) Weak Bases are weak electrolytes NO 2 - (aq) + H 2 O (l) OH - (aq) + HNO 2 (aq) 15.4

16 Strong AcidWeak Acid 15.4

17 What is the pH of a 2 x 10 -3 M HNO 3 solution? HNO 3 is a strong acid – 100% dissociation. HNO 3 (aq) + H 2 O (l) H 3 O + (aq) + NO 3 - (aq) pH = -log [H + ] = -log [H 3 O + ] = -log(0.002) = 2.7 Start End 0.002 M 0.0 M What is the pH of a 1.8 x 10 -2 M Ba(OH) 2 solution? Ba(OH) 2 is a strong base – 100% dissociation. Ba(OH) 2 (s) Ba 2+ (aq) + 2OH - (aq) Start End 0.018 M 0.036 M0.0 M pH = 14.00 – pOH = 14.00 + log(0.036) = 12.6 15.4

18 HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Weak Acids (HA) and Acid Ionization Constants HA (aq) H + (aq) + A - (aq) K a = [H + ][A - ] [HA] K a is the acid ionization constant KaKa weak acid strength 15.5

19

20 What is the pH of a 0.5 M HF solution (at 25 0 C)? HF (aq) H + (aq) + F - (aq) K a = [H + ][F - ] [HF] = 7.1 x 10 -4 HF (aq) H + (aq) + F - (aq) Initial (M) Change (M) Equilibrium (M) 0.500.00 -x-x+x+x 0.50 - x 0.00 +x+x xx K a = x2x2 0.50 - x = 7.1 x 10 -4 Ka  Ka  x2x2 0.50 = 7.1 x 10 -4 0.50 – x  0.50 K a << 1 x 2 = 3.55 x 10 -4 x = 0.019 M [H + ] = [F - ] = 0.019 M pH = -log [H + ] = 1.72 [HF] = 0.50 – x = 0.48 M 15.5

21 When can I use the approximation? 0.50 – x  0.50 K a << 1 When x is less than 5% of the value from which it is subtracted. x = 0.019 0.019 M 0.50 M x 100% = 3.8% Less than 5% Approximation ok. What is the pH of a 0.05 M HF solution (at 25 0 C)? Ka  Ka  x2x2 0.05 = 7.1 x 10 -4 x = 0.006 M 0.006 M 0.05 M x 100% = 12% More than 5% Approximation not ok. Must solve for x exactly using quadratic equation or method of successive approximation. 15.5

22 Solving weak acid ionization problems: 1.Identify the major species that can affect the pH. In most cases, you can ignore the autoionization of water. Ignore [OH - ] because it is determined by [H + ]. 2.Use ICE to express the equilibrium concentrations in terms of single unknown x. 3.Write K a in terms of equilibrium concentrations. Solve for x by the approximation method. If approximation is not valid, solve for x exactly. 4.Calculate concentrations of all species and/or pH of the solution. 15.5

23 What is the pH of a 0.122 M monoprotic acid whose K a is 5.7 x 10 -4 ? HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) 0.1220.00 -x-x+x+x 0.122 - x 0.00 +x+x xx K a = x2x2 0.122 - x = 5.7 x 10 -4 Ka  Ka  x2x2 0.122 = 5.7 x 10 -4 0.122 – x  0.122 K a << 1 x 2 = 6.95 x 10 -5 x = 0.0083 M 0.0083 M 0.122 M x 100% = 6.8% More than 5% Approximation not ok. 15.5

24 K a = x2x2 0.122 - x = 5.7 x 10 -4 x 2 + 0.00057x – 6.95 x 10 -5 = 0 ax 2 + bx + c =0 -b ± b 2 – 4ac  2a2a x = x = 0.0081x = - 0.0081 HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) 0.1220.00 -x-x+x+x 0.122 - x 0.00 +x+x xx [H + ] = x = 0.0081 M pH = -log[H + ] = 2.09 15.5

25 percent ionization = Ionized acid concentration at equilibrium Initial concentration of acid x 100% For a monoprotic acid HA Percent ionization = [H + ] [HA] 0 x 100% [HA] 0 = initial concentration 15.5

26 NH 3 (aq) + H 2 O (l) NH 4 + (aq) + OH - (aq) Weak Bases and Base Ionization Constants K b = [NH 4 + ][OH - ] [NH 3 ] K b is the base ionization constant KbKb weak base strength 15.6 Solve weak base problems like weak acids except solve for [OH-] instead of [H + ].

27 15.6

28 15.7 Ionization Constants of Conjugate Acid-Base Pairs HA (aq) H + (aq) + A - (aq) A - (aq) + H 2 O (l) OH - (aq) + HA (aq) KaKa KbKb H 2 O (l) H + (aq) + OH - (aq) KwKw K a K b = K w Weak Acid and Its Conjugate Base Ka =Ka = KwKw KbKb Kb =Kb = KwKw KaKa

29 Factors Affecting Acid Strength The more polar the H– X bond and/or the weaker the H–X bond, the more acidic the compound. So acidity increases from left to right across a row and from top to bottom down a group. © 2012 Pearson Education, Inc.

30 Factors Affecting Acid Strength In oxyacids, in which an –OH is bonded to another atom, Y, the more electronegative Y is, the more acidic the acid. © 2012 Pearson Education, Inc.

31 Factors Affecting Acid Strength For a series of oxyacids, acidity increases with the number of oxygens. © 2012 Pearson Education, Inc.

32 Factors Affecting Acid Strength Resonance in the conjugate bases of carboxylic acids stabilizes the base and makes the conjugate acid more acidic. © 2012 Pearson Education, Inc.

33 Acid-Base Properties of Salts Neutral Solutions: Salts containing an alkali metal or alkaline earth metal ion (except Be 2+ ) and the conjugate base of a strong acid (e.g. Cl -, Br -, and NO 3 - ). NaCl (s) Na + (aq) + Cl - (aq) H2OH2O Basic Solutions: Salts derived from a strong base and a weak acid. NaCH 3 COOH (s) Na + (aq) + CH 3 COO - (aq) H2OH2O CH 3 COO - (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) 15.10

34 Acid-Base Properties of Salts Acid Solutions: Salts derived from a strong acid and a weak base. NH 4 Cl (s) NH 4 + (aq) + Cl - (aq) H2OH2O NH 4 + (aq) NH 3 (aq) + H + (aq) Salts with small, highly charged metal cations (e.g. Al 3+, Cr 3+, and Be 2+ ) and the conjugate base of a strong acid. Al(H 2 O) 6 (aq) Al(OH)(H 2 O) 5 (aq) + H + (aq) 3+2+ 15.10


Download ppt "Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display."

Similar presentations


Ads by Google