A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J1640-465 Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.

Slides:



Advertisements
Similar presentations
Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Millisecond pulsar population and related high energy phenomena 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
Supernova remnants and molecular clouds Armand Fiasson LAPP - Annecy-le-vieux.
The Fermi Bubbles as a Scaled-up Version of Supernova Remnants and Predictions in the TeV Band YUTAKA FUJITA (OSAKA) RYO YAMAZAKI (AOYAMA) YUTAKA OHIRA.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
Supernova HE Francesco Giordano University and INFN Bari Gamma 400 Workshop.
25 ii 2011NASM1 Exploring the Crab Nebula with the Hubble, Chandra and Fermi Space Telescopes Roger Blandford KIPAC Stanford.
October 10, 2002COSPAR Houston, TX1 X-Ray Spectral Morphologies of Young Supernova Remnants John P. Hughes Rutgers University  Cara Rakowski, Rutgers.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
MODELING STATISTICAL PROPERTIES OF THE X-RAY EMISSION FROM AGED PULSAR WIND NEBULAE Rino Bandiera – INAF – Oss. Astrof. di Arcetri The Fast and the Furious,
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Molecular clouds and gamma rays
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
Time dependent modeling of AGN emission from inhomogeneous jets with Particle diffusion and localized acceleration Extreme-Astrophysics in an Ever-Changing.
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
2009 Fermi Symposium, Washington, DC Patrick Slane (CfA) Supernova Remnants and Pulsar Wind Nebulae in the Fermi Era Collaborators: D. Castro S. Funk Y.
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
The X-ray Universe Sarah Bank Presented July 22, 2004.
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Gamma-ray emission from molecular clouds: a probe of cosmic ray origin and propagation Sabrina Casanova Ruhr Universitaet Bochum & MPIK Heidelberg, Germany.
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
Diffuse Emission and Unidentified Sources
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
PLASMA WAKEFIELD ACCELERATION Pisin Chen Kavli Institute for Particle Astrophysics and Cosmology Stanford Linear Accelerator Center Stanford University.
The Radio Evolution of the Galactic Center Magnetar Joseph Gelfand (NYUAD / CCPP) Scott Ransom (NRAO), Chryssa Kouveliotou (GWU), Mallory S.E. Roberts.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
SNRs: (& PWNe, SBs, …) Future Science Objectives and Instrument requirements Terri Brandt NASA / Goddard Fermi Symposium GammaSIG Session 13 Nov 2015.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
Cosmic Rays & Supernova Remnants love story: The Importance
Observation of Pulsars and Plerions with MAGIC
A large XMM-Newton project on SN 1006
High Energy emission from the Galactic Center
Particle Acceleration in the Universe
A large XMM-Newton project on SN 1006
Modelling of non-thermal radiation from pulsar wind nebulae
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
超新星遗迹 的XTP 观测模拟 南京大学 陈阳、周平、张潇.
SNR 的XTP 观测模拟 南京大学 陈阳、周平、张潇.
Presentation transcript:

A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean Shaff (NYUAD) 2015 December th Texas Symposium on Relativistic Astrophysics

Outline Why study Galactic TeV sources? TeV  -rays → >PeV particles Normally SNR or PWN. Why HESS J ? Most luminous TeV  -ray source in Milky Way Associated with a radio SNR, X-ray PWN, and a pulsar If HESS J is a PWN… pulsar spun down very rapidly Initial spin period P 0 ~ 20 – 35 ms 2015 December 14 28th Texas Symposium on Relativistic Astrophysics2

Sources of TeV  -ray emission Numerous discrete TeV  -ray sources in Milky Way Main source classes: Supernova Remnants (SNRs) Pulsar Wind Nebulae (PWNe) Often associated with each other 2015 December 14 28th Texas Symposium on Relativistic Astrophysics3 (Carrigan et al. 2013, arXiv: )

HESS J1640 – December 14 28th Texas Symposium on Relativistic Astrophysics4 (HESS Collaboration et al. 2014, MNRAS, 439, 2828) (A. Abramowski et al. 2014, ApJ, 794, L1) Luminous TeV source in a crowded region Borders HESS J MeV and GeV emission detected as well GeV  -rays predominantly from HESS J (Lemoine-Goumard et al. 2014, ApJ,794, L16)

Radio Supernova Remnant Crowded region Coincident with SNR G Located behind massive star cluster Electrons and protons accelerated to high energy in SNR shell Inverse Compton emission from high- energy electrons CR protons + Ambient protons →  0 →  (“hadronic”) 2015 December 14 28th Texas Symposium on Relativistic Astrophysics5 (Castelleti et al. 2011, A&A, 536, A98)

SNR Interpretation of HESS J  -rays predominantly hadronic CR energy ~5×10 48 ergs HESS J : diffusing CRs interacting with nearby molecular cloud Problem: No direct evidence for interaction between SNR G338.3–0.0 No thermal X-rays No OH masers CO nearby, but not coincident 2015 December 14 28th Texas Symposium on Relativistic Astrophysics6 (Tang et al. 2015, ApJ, 812, 32) (HESS Collaboration et al. 2014, MNRAS, 439, 2828)

X-ray Pulsar PSR J Fairly high Ė, fairly low characteristic age Properties consistent with that observed from other  -ray PWNe 2015 December 14 28th Texas Symposium on Relativistic Astrophysics7 (Gotthelf et al. 2014, ApJ, 788, 155) (Mattana et al. 2009, ApJ, 694, 12)

X-ray Pulsar Wind Nebula Discovered before pulsar X-ray size «  -ray size Chandra spectrum Uncertain due to high N H → limited bandwidth  = 1.4±0.4 dependent on abundance models NuSTAR spectrum Contaminated by pulsar  = 2.3± December 14 28th Texas Symposium on Relativistic Astrophysics8 (Funk et al. 2007, ApJ, 662, 517) (Gotthelf et al. 2014, ApJ, 788, 155)

Is HESS J1640 ‒ 465 a Pulsar Wind Nebula? Observed Properties SNR radius PWN radius = TeV radius Radio upper-limit Chandra X-ray spectrum Fermi spectrum HESS spectrum Current pulsar Ė, characteristic age Uncertainties Initial kinetic energy E sn and mass M ej of supernova ejecta Density of surrounding ISM n ism Pulsar braking index p and spin- down timescale  sd Magnetization  B and particle spectrum (E min, E break, E max, p 1, p 2 ) Temperature and energy density of background photon field(s) Distance 2015 December 14 28th Texas Symposium on Relativistic Astrophysics9

10 Schematic of a Pulsar Wind Nebula inside a Supernova Remnant Neutron Star Pulsar Wind Termination Shock Magnetic Field:  B Ė Electrons: (1-  B )Ė Injection Spectrum Pulsar Wind Nebula Pressure: P pwn Magnetic Field: B pwn Swept-up Material Mass: M sw,pwn Velocity: v pwn Supernova Remnant Pressure: P snr (R pwn ) Velocity: v snr (R pwn ) Density:  snr (R pwn ) Ejecta mass: M ej Kinetic energy: E sn Density ISM: n ism (Gelfand et al. 2009, ApJ, 703,2051) 2015 December 14 28th Texas Symposium on Relativistic Astrophysics

11 Evolutionary Model for a Pulsar Wind Nebula Inside a Supernova Remnant Homogeneous ISM, Pulsar Wind Nebula (PWN) One-zone model Dynamical evolution determined by motion of swept-up material Net force from pressure difference between PWN and Supernova Remnant (SNR) Emission dominated by synchrotron radiation and Inverse Compton scattering of electrons off background photons (Figure 6; Gelfand et al. 2007) Pulsar Wind Nebula 4πR pwn 2 P pwn 4πR pwn 2 P snr (R pwn ) Supernova Remnant 2015 December 14 28th Texas Symposium on Relativistic Astrophysics (Gelfand et al. 2009, ApJ, 703,2051)

Model Results MCMC algorithm to identify combinations of model parameters which minimize  2 22 degrees of freedom Lowest reduced  2 ≈ December 14 28th Texas Symposium on Relativistic Astrophysics12 Prefers X-ray  > 2 “Noisy” Fermi spectrum

PSR J properties 2015 December 14 28th Texas Symposium on Relativistic Astrophysics13 (HESS Collaboration et al. 2014, MNRAS, ) Pulsar braking index p,spin-down timescale  sd largely unconstrained … but  sd ≤ 100 years Why? PWN size ≈ SNR size Occurs IF NS rotational energy ≈ SN energy Ė much higher in the past PRELIMINARY!

Initial Spin Period of PSR J Initial spin period P 0 « P≈206 ms now P 0 ~ 20 – 35 ms Compare with models / other pulsars Somewhat lower than other pulsars Inconsistent with P 0 limited by GW emission? 2015 December 14 28th Texas Symposium on Relativistic Astrophysics14 PRELIMINARY!

Summary Can reproduce properties of HESS J with PWN model IF PSR J spun down rapidly Need to: Determine MeV spectrum from additional Fermi data Better measure X-ray extent, spectrum of PWN Utilize possible pulsar braking index measurement by NuSTAR Detect PWN in radio (SKA?) Add SNR component to modeling Include effects of cosmic ray acceleration on SNR evolution 2015 December 14 28th Texas Symposium on Relativistic Astrophysics15 Thank You!

2015 December 14 28th Texas Symposium on Relativistic Astrophysics16

Background Photon Field 2015 December 14 28th Texas Symposium on Relativistic Astrophysics17

Pulsar Wind Properties 2015 December 14 28th Texas Symposium on Relativistic Astrophysics18

Combined Emission from Pulsar & Pulsar Wind Nebula? Pulsar Power-law with exponential cut off Constant  -ray efficiency   Pulsar Wind Nebula One-zone evolutionary model Broken power- law injection spectrum 2015 December 14 28th Texas Symposium on Relativistic Astrophysics19 (Abdo et al. 2013, ApJS, 208, 17) (Gelfand et al. 2009, ApJ, 703,2051)