Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.

Slides:



Advertisements
Similar presentations
Impurity effect on charge and spin density in α-Fe
Advertisements

169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
Mössbauer Spectroscopy under Magnetic Field to Explore the Low Temperature Spin Structure in a Molecular Layered Ferrimagnet A. Bhattacharjee, P. Gütlich.
157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Relativistic Effects in Gold Chemistry Jan Stanek Jagiellonian University Marian Smoluchowski Institute of Physics Krakow, Poland.
Valence instabilities of gold in perovskite structures The relativistic effects in gold stabilizes enormously the 6s level and destabilizes the 5d levels.
investigated by means of the Mössbauer Spectroscopy
Spin reorientation in the Er 2-x Fe 14+2x Si 3 single-crystal studied by Mössbauer spectroscopy J. Żukrowski 1, A. Błachowski 2, K. Ruebenbauer 2, J. Przewoźnik.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,
Fractal behavior of the BCC/FCC phase separation in iron-gold alloys Artur Błachowski 1, Krzysztof Ruebenbauer 1, Anna Rakowska 2,3 1 Mössbauer Spectroscopy.
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Fundamentals of Magnetism T. Stobiecki. Definitions of magnetic fields Induction: External magnetic field: Magnetizationaverage magnetic moment of magnetic.
Electron Spin Resonance Spectroscopy
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
Fundamentals of Magnetism T. Stobiecki, Katedra Elektroniki AGH 2 wykład
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Lesson 9 Gamma Ray Decay. Electromagnetic decay There are two types of electromagnetic decay,  -ray emission and internal conversion (IC). In both of.
Quantum numbers and Periodic table
Corey Thompson Technique Presentation 03/21/2011
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Mossbauer Spectroscopy
Determination of Spin-Lattice Relaxation Time using 13C NMR
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
Magnetic Resonance Contributions to Other Sciences Norman F. Ramsey Harvard University Principles of Magnetic Resonance First experiments Extensions to.
Introduction to NMR Spectroscopy and Imaging Review (Spring Term, 2011) Department of Chemistry National Sun Yat-sen University 核磁共振光譜與影像導論.
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
Collinear laser spectroscopy of 42g,mSc
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
NMR spectroscopy in solids: A comparison to NMR spectroscopy in liquids Mojca Rangus Mentor: Prof. Dr. Janez Seliger Comentor: Dr. Gregor Mali.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
M. Kopcewicz and T. Kulik a ) Institute of Electronic Materials Technology, Warszawa, Wólczyńska Street 133, Poland, a ) Faculty of Materials Science.
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Basics of …….. NMR phenomenonNMR phenomenon Chemical shiftChemical shift Spin-spin splittingSpin-spin splitting.
Chapter 7 Atomic Energies and Periodicity Department of Chemistry and Biochemistry Seton Hall University.
An Introduction to Fe-based superconductors
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Ch Magnetism I. Characteristics of Magnets (p )  Magnetism  Magnetic poles  Magnetic field  Magnetic domain.
DEFINTION The study of the interaction between magnetic field of the nuclei and the magnetic component of the electromagnetic radiation(EMR) in the radio.
The first-order magnetostructural transition in Gd 5 Sn 4 D.H. Ryan Physics Department, McGill University, Montreal, QC, Canada, H3A 2T8
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
hyperfine interactions (and how to do it in WIEN2k)
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers in Duquesne University.
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Magnetism of the regular and excess iron in Fe1+xTe
Signatures of Berezinskii-Kosterlitz-Thouless transition in double-layered molecular magnet based on [W V (CN) 8 ] 3- and Cu 2+ Signatures of Berezinskii-Kosterlitz-Thouless.
Comparing erbium moments derived from 166 Er Mössbauer spectroscopy and neutron diffraction D.H. Ryan and J.M. Cadogan Physics Department, McGill University,
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Jun Hee Cho1, Sang Gil Ko1, Yang kyu Ahn1, Eun Jung Choi2
Mossbauer spectroscopy
University of Ioannina
Low Temperature Phase Transitions in GdPdAl
Phase diagram of FeSe by nematic ultrafast dynamics
NMR study of 133Cs in a new quasi-one-dimensional conducting platinate
Electric quadrupole interaction in cubic BCC α-Fe
MAGNETIC MATERIALS. MAGNETIC MATERIALS – Introduction MAGNETIC MATERIALS.
Chapter 10 Magnetic Properties Introduction 10
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Z. Leśnikowski, E. Przelazły, K. Dziedzic-Kocurek, J. Stanek
Ion-beam, photon and hyperfine methods in nano-structured materials
Mr.Halavath Ramesh 16-MCH-001 Department of Chemistry Loyola College-Chennai University of Madras.
Presentation transcript:

Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K. Wojciechowski 3, Z.M. Stadnik 4 1 Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Cracow, Poland 2 Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland 3 Department of Inorganic Chemistry, Faculty of Material Science and Ceramics, AGH University of Science and Technology, Cracow, Poland 4 Department of Physics, University of Ottawa, Ottawa, Canada

Superconducting Materials

~55K ~40K ~20K ~10K Fe-based Superconducting Families LaFeAsOF BaFe 2 As 2 LiFeAs FeSe

Fe-Se phase diagram The following phases form close to the FeSe stoichiometry: 1) tetragonal P4/nmm structure similar to PbO, called β-FeSe (or α-FeSe) 2) hexagonal P6 3 /mmc structure similar to NiAs, called δ-FeSe 3) hexagonal phase Fe 7 Se 8 with two different kinds of order, i.e., 3c (α-Fe 7 Se 8 ) or 4c (β-Fe 7 Se 8 ) A tetragonal P4/nmm phase transforms into Cmma orthorhombic phase at about 90 K, and this phase is superconducting with T c ≈ 8 K.

Aim of this contribution is to answer two questions concerned with tetragonal/orthorhombic FeSe: 1) is there electron spin density (magnetic moment) on Fe ? 2) is there change of electron density on Fe nucleus during transition from P4/nmm to Cmma structure ? Crystal structure of  -FeSe

Fe 1.05 Se

- point A - spin rotation in hexagonal phase - region B - magnetic anomaly correlated with transition between orthorhombic and tetragonal phases - point C- transition to the superconducting state Magnetic susceptibility measured upon cooling and subsequent warming in field of 5 Oe

Change in isomer shift S ↓ Change in electron density  on Fe nucleus  S = mm/s ↓  ρ = –0.02 electron/a.u. 3 tetragonal orthorhombic and superconducting orthorhombic phase transition

tetragonal orthorhombic and superconducting orthorhombic phase transition Quadrupole splitting Δ does not change - it means that local arrangement of Se atoms around Fe atom does not change during phase transition T (K)S (mm/s)Δ (mm/s)  (mm/s) (3)0.287(1)0.206(1) (3)0.287(1)0.203(1) (3)0.286(1)0.198(1) (3)0.287(1)0.211(1) (4)0.295(1)0.222(1)

Mössbauer spectra obtained in external magnetic field aligned with γ-ray beam Hyperfine magnetic field is equal to applied external magnetic field. Principal component of the electric field gradient (EFG) on Fe nucleus was found as negative.

Conclusions 1. There is no magnetic moment on iron atoms in the superconducting FeSe. 2. The electron density on iron nucleus is lowered by 0.02 electron / a.u. 3 during transition from tetragonal to orthorhombic phase.