RNA-ligand interactions and control of gene expression

Slides:



Advertisements
Similar presentations
Dogmatic View of Gene Expression DNAProteinRNA Post-transcriptional Control: Quantitative Control: Levels of mRNA not proportional to levels of mRNA synthesized.
Advertisements

Rhiana Lau MMG C174 Professor Simpson
RNA Interference Hannon, Nature 418: Jacques et al, Nature 418:435-8 Carmichael Nature 418: Allshire, Science 297:
Gene Regulation in Eukaryotic Cells. Gene regulation is complex Regulation, and therefore, expression of a gene is complex. Regulation of these genes.
Post-Transcriptional Gene Silencing (PTGS) Also called RNA interference or RNAi Process results in down-regulation of a gene at the RNA level (i.e., after.
Regulation of gene expression by small RNAs
Biochemistry April Lecture RNA Interference (RNAi) (see also siRNA, micRNA, stRNA, etc.)
Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways Lee, S.Y., Nakahara, K., Phan, J.W., Kim, K., He, Z., Sontheimer,
Advantages of C. elegans: 1. rapid life cycle 2. hermaphrodite
UTR motifs and microRNA analysis 曾 大 千 助 理 教 授 10/28/2008.
Post-transcriptional gene silencing
Clicker question The 2006 Nobel Prize in Medicine was given to Andrew Fire and Craig Mello for their work showing that ____ can regulate the expression.
Epigenetics Course Title: Lecture Titles:
Chapter 13 Regulatory RNA Introduction RNA functions as a regulator by forming a region of secondary structure (either inter- or intramolecular)
Post-Transcriptional Gene Silencing (PTGS) Also called RNA interference or RNAi Process results in down-regulation of a gene at the RNA level (i.e., after.
Molecular Cellular Biology-I (MCB-I) PCB 6025 M. Alejandro Barbieri M. Alejandro Barbieri Office: HLS 318C/214 Hours: by appointment.
Control of Gene Expression Eukaryotes. Eukaryotic Gene Expression Some genes are expressed in all cells all the time. These so-called housekeeping genes.
Transfection. What is transfection? Broadly defined, transfection is the process of artificially introducing nucleic acids (DNA or RNA) into cells, utilizing.
Lecture 16 – Overview of sRNA Signaling BIOL 5190/6190 Cellular & Molecular Singal Transduction Prepared by Bob Locy Last modified -13F.
Regulation of Gene Expression
BEH. 109: Laboratory Fundamentals in Biological Engineering
Regulatory RNAs. Cells produce several types of RNA.
RNA processing Proks vs. Euks In proks, transcription & translation coupled In euks, processes are temporally& spatially separated so more control.
MBV2010/BIO2140 Colloquium, May 7
Regulation of gene expression Part II MOLECULAR BIOLOGY – Regulation of gene expression II.
RNA interference Definition: RNA interference (RNAi) is a mechanism where the presence of certain fragments.
MBP1007/ Nucleic Acids A functional mRNA: The cytoplasmic story Objectives (1) To discuss the iNUTS and iBOLTS of how mRNAs function in the cytoplasm.
SiRNA and Epigenetic Asma Siddique Saloom Aslam Syeda Zainab Ali.
rasiRNAs: a class of small regulatory RNAs
RNAi Mechanism. The Central Dogma DNA (double-stranded) RNA (single-stranded) Protein.
Changes to Syllabus: Quizzes put back: Change Oct. 3 to Oct. 17
What is RNA interference?
Epigenetics: RNAi and Heterochromatin formation
Welcome Everyone. Self introduction Sun, Luguo ( 孙陆果) Contact me by Professor in School of Life Sciences & National Engineering.
RNnomics Advanced MCB Presentation Series I Group Members: 孙群, 刘军, 段文霞,刘少英.
Drosha. 121th Lab meeting 석사 2 년 박 은 실.
Arabidopsis thaliana Response to Tobacco Rattle Virus Jessica Martin, Cory Zoetewey, and Lisa K. Johansen, Department of Biology University of Colorado.
AP Biology Control of Eukaryotic Genes.
Conditional systems - principles Conditional systems may function on the basis of: - regulatory proteins - aptamers - allosteric ribozymes - antisense.
Biochemistry 412 RNA Interference (RNAi) (see also siRNA, micRNA, stRNA, etc.) 8 April 2005 Lecture.
Nature, 2008, Doi: /nature07103 Semrah Kati
The Power of “Genetics” LOSS OF FUNCTION Easy in yeast Difficult in mammals Powerful tool to address roles in developmental or signaling networks Gene.
Advantages of C. elegans: 1. rapid life cycle 2. hermaphrodite 3. prolific reproduction 4. transparent 5. only ~1000 cells 6. laser ablation 7. complete.
Chapter 13 Regulatory RNA Introduction RNA functions as a regulator by forming a region of secondary structure (either inter- or intramolecular)
Control of Gene Expression. Ways to study protein function by manipulating gene expression Mutations –Naturally occurring, including human and animal.
Tema 9 miRNA y siRNA CA García Sepúlveda MD PhD
Viral Silencing Suppressors. Tools forged to fine-tune host-pathogen coexistence.
Vectors for RNAi.
Atta ur Rahman school of biological Science National University of Sciences & Technology CMB-234:Molecular Biology.
Ch 16. Posttranscriptional Regulation RNA interference (RNAi)
Lecture 8 Ch.7 (II) Eukaryotic Gene Regulation. Control of Gene Expression in Eukaryotes: an overview.
Non-Coding RNA Helen Nordquist November 13, 2015.
MiRNAs and siRNAs 5 th March 2013 Saeideh Jafarinejad 4/22/2013 Rhumatology Research Center Lab(RRC lab)
BIO409/509 Cell and Molecular Biology. SECOND Methods paper assignment due Wed., 4/20 (you don’t do this assignment if you are in the 4H STEM Ambassador.
Regulatory RNAs riboswitch RNA Regulation by RNAs in Bacteria
An Introduction to RNA Interference
Chapter 18 – Gene Regulation Part 2
Conditional systems - principles
RNAi Overview
Figure 2 Dicer and RISC (RNA-induced silencing complex).
I Virus e l’RNAi approfondimenti.
Gene Expression Dr. Kevin Ahern.
Steps in microRNA gene silencing
Coordinately Controlled Genes in Eukaryotes
MicroRNAs: regulators of gene expression and cell differentiation
siRNA / microRNA epigenetics stem cells
The Power of “Genetics”
Presentation transcript:

RNA-ligand interactions and control of gene expression

Outline • RNA interference (microRNAs and siRNAs) • Ribosomal RNA, tRNA, and mRNA interactions • RNA interactions affecting translation and transcription (outside the ribosome) • Naked RNA • RNA-metabolite interactions (riboswitches)

RNA interference

RNA interference (RNAi) • RNAi is the process whereby double-stranded RNA (dsRNA) induces homology-dependent degradation of cognate RNA (i.e. gene silencing) • RNAi is central to cellular mechanisms of post-transcriptional gene silencing (PTGS) and can also effect transcriptional gene silencing (TGS) • RNAi is highly conserved among eukaryotes (fungi, protozoans, plants, nematodes, invertebrates, mammals)

Overview of RNAi • Double-stranded RNA (dsRNA) is processed by Dicer, an RNase III family member, to produce 21-23nt small interfering RNAs (siRNAs) • siRNAs are manipulated by a multi-component nuclease called the RNA-induced silencing complex (RISC). • RISC specifically cleaves mRNAs that have perfect complementarity to an siRNA strand

Components of the RNAi pathway • Dicer Dicer belongs to the RNase III family of dsRNA-specific ribonucleases. Contains dsRNA-binding motifs and a PAZ domain believed to mediate protein-protein interactions. • Argonaute homologs (Dicer/RISC associated) Argonaute family members are highly basic proteins that contain PAZ and PIWI domains. Argonaute is the only identified component of RISC. • RNA-dependent RNA polymerase (RdRP) Endogenous RdRPs influence RNAi in certain eukaryotes including fungi, plants, C. elegans. Function to amplify the dsRNA signal.

Discovery of RNAi • RNAi was initially discovered and characterized in the C. elegans • It was observed that antisense or sense RNA could equally effect silencing (knock-down) of target gene expression • A later study demonstrated that antisense and sense RNA combined (dsRNA) is 10-times more effective in silencing target gene expression • Genetic studies in C. elegans have helped to identify genes encoding RNAi machinery

The bottom line • Any means by which siRNAs can be generated and delivered to a cell can elicit RNAi and gene-specific silencing • siRNAs are powerful tools for manipulating gene expression and determining gene function

Nature did not exhaust billions of years of evolution on RNAi solely for the benefit of modern day biologists!

Biological significance of RNAi • Cellular immune response to viruses In certain organism (especially plants), RNAi serves as a first line of defense against viral infection, as viral replication typically includes dsRNA species • Genetic stability RNAi repress the mobility of transposable genetic elements in C. elegans and S. pombe which requires the formation of dsRNA Revealed that RNAi can also effect transcriptional gene silencing by promoting heterochromatin formation (histone and DNA methylation) • Organismal development and germline fate Developmental processes are affected by endogenous non-coding RNAs that function through the RNAi pathway (microRNAs)

MicroRNAs (miRNAs) • miRNAs are products of endogenous genes and function through the RNA interference (RNAi) pathway to post-transcriptionally regulate the expression of other genes.

miRNA genes • To date, 1185 miRNA genes have been identified in various organisms, including approximately 200 in each human, mouse, and rat genomes. • Certain miRNAs are highly conserved among eukaryotic species.

miRNAs in development • miRNAs are differentially expressed among various tissue types and at various stages in cellular differentiation. e.g. there exist stem cell and neuronal cell specific miRNAs. • Disruption of RNAi pathway results in early embryonic lethality due to depletion of stem cells. • Certain miRNAs are known to control developmental timing and fate specification in C. elegans, leaf morphogenesis in plants, and hematopoetic lineage differentiation in mice.