Photosynthesis Chapter 8. 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO 2 + 12H 2 O C 6 H 12 O 6 +

Slides:



Advertisements
Similar presentations
Photosynthesis/respiration
Advertisements

Photosynthesis Chapter 8.
An Overview of Photosynthesis Most of the energy used by almost all living cells ultimately comes from the sun  plants, algae, and some bacteria capture.
Photosynthesis Chapter 8 Adapted by G. Cornwall, Ph.D.
1 Photosynthesis Chapter Outline Chloroplasts Light-Independent Reactions Absorption Spectra – Pigments Light-Dependent Reactions Photosystems C.
Photosynthesis. 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO H 2 O C 6 H 12 O 6 + 6H 2 O + 6O.
Essentials of Biology Sylvia S. Mader
Raven - Johnson - Biology: 6th Ed. - All Rights Reserved - McGraw Hill Companies Photosynthesis Copyright © McGraw-Hill Companies Permission required for.
Photosynthesis. Photosynthesis: An Overview  Electrons play a primary role in photosynthesis  In eukaryotes, photosynthesis takes place in chloroplasts.
Photosynthesis. A. Background 1. The conversion of light energy (from the sun) into chemical energy (stored in sugar & organic molecules. 2. Plants, algae.
Photosynthesis. Photosynthesis - overview 1. The conversion of light energy (from the sun) into chemical energy (stored in sugar & organic molecules.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 8 LECTURE SLIDES.
PHOTOSYNTHESIS. YOU MUST KNOW… HOW PHOTOSYSTEMS CONVERT SOLAR ENERGY TO CHEMICAL ENERGY HOW LINEAR ELECTRON FLOW IN THE LIGHT REACTIONS RESULTS IN THE.
Photosynthesis Ch 7. Autotrophs Chloroplasts Contain chlorophyll – Green Site of photosynthesis Concentrated in leaves.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 8.
Photosynthesis 6 CO H Light  C 6 H 12 O O H 2 O Occurs in 2 Stages – both take place in the Chloroplasts Light Reactions Splitting.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Lecture Slides.
Introduction to Photosynthesis Biology 11 S.Dosman.
Lesson 8: Photosynthesis March 17, Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO H 2 O C.
Photosynthesis Chapter 8.
Photosynthesis Chapter 8.
Photosynthesis Chapter 8. 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO H 2 O C 6 H 12 O 6 +
PHOTOSYNTHESIS REVIEW
1-1 Honors Biology Chapter 8 Photosynthesis John Regan Wendy Vermillion Columbus State Community College Copyright The McGraw-Hill Companies, Inc. Permission.
Chapter 7: Photosynthesis (Outline)
Photosynthesis Conversion of light energy from the sun into stored chemical energy in the form of glucose and other organic molecules.
Photosynthesis Chapter 6. Carbon and Energy Sources Photoautotrophs Carbon source is carbon dioxide Energy source is sunlight Heterotrophs Get carbon.
Raven - Johnson - Biology: 6th Ed. - All Rights Reserved - McGraw Hill Companies Photosynthesis Copyright © McGraw-Hill Companies Permission required for.
Photosynthesis Chapter 8. 2 PHOTOSYNTHESIS Life is powered by the sun. The vast diversity of life on the Earth is due to about ____________________. Comes.
Fig Stages of Photosynthesis 1.Capturing light energy 2.Using this energy to make ATP to split H2O molecules and use (H+) to reduce NADP+ to.
Photosynthesis. Getting Energy Autotrophs- make their own energy (usually from the sun) Ex. plants Heterotrophs- get energy from other organisms Ex. animals,
CHAPTER 8 Photosynthesis. Chapter 8 Photosynthesis.
1 Photosynthesis Chapter Outline Chloroplasts Light-Independent Reactions Absorption Spectra – Pigments Light-Dependent Reactions Photosystems C.
Light energy is trapped and converted into chemical energy during photosynthesis. Section 2: Photosynthesis K What I Know W What I Want to Find Out L What.
AP Biology 2 Notes Chapter 10 Photosynthesis. Introductory Vocab Heterotrophs Autotrophs Chemoautotrophs Mesophyll Stroma Grana Thylakoids.
Photosynthesis Chapter 8. Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO H 2 O C 6 H 12 O 6 + 6H.
Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis.
Photosynthesis: Acquiring Energy from the Sun
Raven - Johnson - Biology: 6th Ed. - All Rights Reserved - McGraw Hill Companies Photosynthesis Chapter 5-6 Copyright © McGraw-Hill Companies Permission.
How Cells Harvest Energy Chapter 7. Laws of Thermodynamics Most reactions require some energy to get started. activation energy: extra energy needed to.
LG 5 Outline Photosynthesis
Photosynthesis.
Photosynthesis Chapter 8.
Photosynthesis, the light reaction
Chapter 5 Photosynthesis
Ch. 10 part 1 The light reaction. I. Autotrophs- Organisms that make their own food (convert light energy to chemical energy) I. Autotrophs- Organisms.
Chapter 10 Photosynthesis. main idea: making glucose autotroph – self-feeder; -organism which makes its own food a) phototrophic – uses light b) chemotrophic.
Copyright © 2005 Brooks/Cole — Thomson Learning Biology, Seventh Edition Solomon Berg Martin Chapter 8 Photosynthesis: Capturing Energy.
CHAPTER 8 LECTURE SLIDES
Chapter 10: Photosynthesis Photosynthesis transforms solar light energy into chemical bond energy stored as sugar.
Photosynthesis Chapter 7. 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO H 2 O C 6 H 12 O 6 +
Photosynthesis: The Details. Photosynthesis Divided into two steps: 1.The Light Reactions Noncyclic electron flow 2.The Calvin Cycle Cyclic electron flow.
Photosynthesis The Light Dependent Reactions. Formula 6 CO H 2 O + Light Energy [CH 2 O] + 6O 2 Chlorophyll.
Photosynthesis Chapter 10 Part 2. The Light Reactions Driven by visible light – light is electromagnetic radiation – only small fraction of radiation.
DO NOW A tree begins as a seed, where does all the mass (the stuff that makes up the wood, and roots and leaves) come from?
Photosynthesis Chapter 7.
Photosynthesis Chapter 10.
Photosynthesis.
Photosynthesis.
Photosynthesis.
Photosynthesis Chapter 8.
Photosynthesis Chapter 10.
CHAPTER 8 LECTURE SLIDES
Quiz over cellular respiration
Chapter 6 PHOTOSYNTHESIS.
Chapter 10 Photosynthesis
carbon dioxide water glucose water oxygen
Chapter 10 – Photosynthesis
Photosynthesis Chapter 8.
Photosynthesis Divided into two steps: The Light Reactions
Presentation transcript:

Photosynthesis Chapter 8

2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by: cyanobacteria, 7 groups of algae, all land plants

3 Photosynthesis Overview Photosynthesis is divided into: light-dependent reactions -capture energy from sunlight -make ATP and reduce NADP + to NADPH carbon fixation reactions -use ATP and NADPH to synthesize organic molecules from CO 2

4

5 Photosynthesis Overview Photosynthesis takes place in chloroplasts. thylakoid membrane – internal membrane arranged in flattened sacs -contain chlorophyll and other pigments grana – stacks of thylakoid membranes stroma – semiliquid substance surrounding thylakoid membranes

6

7 Discovery of Photosynthesis The work of many scientists led to the discovery of how photosynthesis works. Jan Baptista van Helmont ( ) Joseph Priestly ( ) Jan Ingen-Housz ( ) F. F. Blackman ( )

8 Discovery of Photosynthesis C. B. van Niel, 1930’s -proposed a general formula: CO 2 +H 2 A + light energy CH 2 O + H 2 O + 2A where H 2 A is the electron donor -van Niel identified water as the source of the O 2 released from photosynthesis -Robin Hill confirmed van Niel’s proposal that energy from the light reactions fuels carbon fixation

9 Pigments photon: a particle of light -acts as a discrete bundle of energy -energy content of a photon is inversely proportional to the wavelength of the light photoelectric effect: removal of an electron from a molecule by light -occurs when photons transfer energy to electrons

10

11 Pigments Pigments: molecules that absorb visible light Each pigment has a characteristic absorption spectrum, the range and efficiency of photons it is capable of absorbing.

12

13 Pigments chlorophyll a – primary pigment in plants and cyanobacteria -absorbs violet-blue and red light chlorophyll b – secondary pigment absorbing light wavelengths that chlorophyll a does not absorb

14 Pigments Structure of pigments: porphyrin ring: complex ring structure with alternating double and single bonds -magnesium ion at the center of the ring -photons excite electrons in the ring -electrons are shuttled away from the ring

15

16 Pigments accessory pigments: secondary pigments absorbing light wavelengths other than those absorbed by chlorophyll a -increase the range of light wavelengths that can be used in photosynthesis -include: chlorophyll b, carotenoids, phycobiloproteins -carotenoids also act as antioxidants

17 Photosystem Organization A photosystem consists of 1. an antenna complex of hundreds of accessory pigment molecules 2. a reaction center of one or more chlorophyll a molecules Energy of electrons is transferred through the antenna complex to the reaction center.

18

19 Photosystem Organization At the reaction center, the energy from the antenna complex is transferred to chlorophyll a. This energy causes an electron from chlorophyll to become excited. The excited electron is transferred from chlorophyll a to an electron acceptor. Water donates an electron to chlorophyll a to replace the excited electron.

20

21 Light-Dependent Reactions Light-dependent reactions occur in 4 stages: 1. primary photoevent – a photon of light is captured by a pigment molecule 2. charge separation – energy is transferred to the reaction center; an excited electron is transferred to an acceptor molecule 3. electron transport – electrons move through carriers to reduce NADP + 4. chemiosmosis – produces ATP

22 Light-Dependent Reactions In sulfur bacteria, only one photosystem is used for cyclic photophosphorylation 1. an electron joins a proton to produce hydrogen 2. an electron is recycled to chlorophyll -this process drives the chemiosmotic synthesis of ATP

23

24 Light-Dependent Reactions In chloroplasts, two linked photosystems are used in noncyclic photophosphorylation 1. photosystem I -reaction center pigment (P 700 ) with a peak absorption at 700nm 2. photosystem II -reaction center pigment (P 680 ) has a peak absorption at 680nm

25 Light-Dependent Reactions Photosystem II acts first: -accessory pigments shuttle energy to the P 680 reaction center -excited electrons from P 680 are transferred to b 6 -f complex -electron lost from P 680 is replaced by an electron released from the splitting of water

26 Light-Dependent Reactions The b 6 -f complex is a series of electron carriers. -electron carrier molecules are embedded in the thylakoid membrane -protons are pumped into the thylakoid space to form a proton gradient

27 Light-Dependent Reactions Photosystem I -receives energy from an antenna complex -energy is shuttled to P 700 reaction center -excited electron is transferred to a membrane-bound electron carrier -electrons are used to reduce NADP + to NADPH -electrons lost from P 700 are replaced from the b 6 -f complex

28 Light-Dependent Reactions ATP is produced via chemiosmosis. - ATP synthase is embedded in the thylakoid membrane -protons have accumulated in the thylakoid space -protons move into the stroma only through ATP synthase -ATP is produced from ADP + P i

29

30 Carbon Fixation Reactions To build carbohydrates, cells need: 1. energy -ATP from light-dependent reactions 2. reduction potential -NADPH from photosystem I

31 Carbon Fixation Reactions Calvin cycle -biochemical pathway that allows for carbon fixation -occurs in the stroma -uses ATP and NADPH as energy sources -incorporates CO 2 into organic molecules

32 Carbon Fixation Reactions carbon fixation – the incorporation of CO 2 into organic molecules -occurs in the first step of the Calvin cycle ribulose-bis-phosphate + CO 2 2(PGA) 5 carbons 1 carbon 3 carbons The reaction is catalyzed by rubisco.

33 Carbon Fixation Reactions The Calvin cycle has 3 phases: 1. carbon fixation RuBP + CO 2 2 molecules PGA 2. reduction PGA is reduced to G3P 3. regeneration of RuBP G3P is used to regenerate RuBP

34

35 Carbon Fixation Reactions Glucose is not a direct product of the Calvin cycle. -2 molecules of G3P leave the cycle -each G3P contains 3 carbons -2 G3P are used to produce 1 glucose in reactions in the cytoplasm

36 Carbon Fixation Reactions During the Calvin cycle, energy is needed. The energy is supplied from: - 18 ATP molecules - 12 NADPH molecules

37 Carbon Fixation Reactions The energy cycle: -photosynthesis uses the products of respiration as starting substrates -respiration uses the products of photosynthesis as starting substrates

38

39 Photorespiration Rubisco has 2 enzymatic activities: 1. carboxylation – the addition of CO 2 to RuBP -favored under normal conditions 2. photorespiration – the oxidation of RuBP by the addition of O 2 -favored in hot conditions CO 2 and O 2 compete for the active site on RuBP.

40

41 Photorespiration Some plants can avoid photorespiration by using an enzyme other than rubisco. -PEP carboxylase -CO 2 is added to phosphoenolpyruvate (PEP) -a 4 carbon compound is produced -CO 2 is later released from this 4-carbon compound and used by rubisco in the Calvin cycle

42 Photorespiration C 4 plants -use PEP carboxylase to capture CO 2 -CO 2 is added to PEP in one cell type (mesophyll cell) -the resulting 4-carbon compound is moved into a bundle sheath cell where the CO 2 is released and used in the Calvin cycle

43

44

45 Photorespiration CAM plants -CO 2 is captured at night when stomata are open -PEP carboxylase adds CO 2 to PEP to produce a 4 carbon compound -this compound releases CO 2 during the day -CO 2 is then used by rubisco in the Calvin cycle

46