光電科技 LED: Materials and Device Aspects 授課教師 : 龔 志 榮 教授 國立中興大學物理學系 中華民國一○二年四月二十二日 1.

Slides:



Advertisements
Similar presentations
Chapter 9. PN-junction diodes: Applications
Advertisements

Report for China Frontier Workshop (June 22nd 2006 Beijing) Wang Zhanguo Key Lab. of Semiconductor Materials Science, Institute of Semiconductors, Chinese.
 To overcome these issues, a “dual-stage MQW” structure was proposed to enhance the electron injection and improve the crystalline quality of the overlying.
II. Basic Concepts of Semiconductor OE Devices
Latest development of InGaN and Short-Wavelength LD/LED/VCSEL 屠嫚琳 Man-lin Tu.
Applications of Photovoltaic Technologies
Finite element simulations of compositionally graded InGaN solar cells G.F. Brown a,b,*, J.W.AgerIIIb, W.Walukiewicz b, J.Wua, b,a Advisor: H.C. Kuo Reporter:
EE 230: Optical Fiber Communication Lecture 11 From the movie Warriors of the Net Detectors.
1 Properties of GaN Films Grown by Atomic Layer Deposition Using Low-temperature III-nitride Interlayers J. R. Gong Department of Materials Science and.
EE235 Class Presentation on Nanoimprint Lithography (Spring 2007) Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography.
Simulation of InGaN violet and ultraviolet multiple-quantum-well laser diodes Sheng-Horng Yen, Bo-Jean Chen, and Yen-Kuang Kuo* *Department of Physics,
Light Emitting Diodes NanoLab Outline Motivation/Applications: Why LED’s? Background Fabrication Testing Conclusions.
1 Simulation of Light-Emitting Diodes and Solar Cells Yen-Kuang Kuo, Jih-Yuan Chang, Miao-Chan Tsai, Tsun-Hsin Wang, Yi-An Chang, Fang-Ming Chen, and Shan-Rong.
4/11/2006BAE Application of photodiodes A brief overview.
APPLIED PHYSICS LETTERS 96, , 2010
High Brightness Light Emitting Diodes Chapter 3 Chapter 4 Reporter :楊勝州.
Kansas State University III-Nitride Deep Ultraviolet Photonic Materials and Structures Jingyu Lin & Hongxing Jiang DMR Growth of III-nitride Photonic.
 It was found that phosphoric acid etching will not degrade electrical properties of the devices. It was also found that we can enhance the LED output.
1. Crystal Properties and Growth of Semiconductors
ECE 340 Lecture 27 P-N diode capacitance
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
MWP 2003 Jin-Wei Shi Si/SiGe Heterojunction Phototransistor Jin-Wei Shi 1,*, Z. Pei 1, Y.-M. Hsu 1, F. Yuan 2, C.-S. Liang 1, Y.-T. Tseng 1, P.-S. Cheng.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Improvement in light-output efficiency of Near-Ultraviolet InGaN–GaN LEDs Fabricated on Stripe Patterned Sapphire Substrate 指導教授 : 管鴻 教授 報告學生 : 林耀祥 日 期:
2003/5/12 國立彰化師範大學 - 屠嫚琳 1 The Blue Laser Diode 屠嫚琳 Man-Lin Tu.
InGaN solar cells show promise for concentrated photovoltaic applications Jingyu Lin, Texas Tech University, DMR InGaN alloys recently emerge as.
SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 1 Adviser : Hon Kuan Adviser : Hon Kuan Wen-Cheng Tzou Wen-Cheng Tzou Reporter :
Luminescence from nano - Si Group I : Maria Szlek Maksymilian Schmidt
1 先進奈米科技暨 應用光電實驗室 Southern Taiwan University. Silicon nano-crystalline structures fabricated by a sequential plasma hydrogenation and annealing technique.
1 High Brightness Light Emitting Diodes Chapter 7~8 Reporter :陳秀芬 Adviser :郭艷光 教授 Date : 2003/5/5(Study meeting)
1 Low Operation Voltage of Nitride-Based LEDs with Al-Doped ZnO Transparent Contact Layer 授課老師: 李明倫 指導教授: 管鴻 學生:蘇奕昕 C. H. Kuo, a,z C. L. Yeh, a P. H. Chen,
 Top DBR mirror replaced with CTF and chiral STF bilayers  The CTF (QWP) introduces a pi/2 retardance to compensate the polarization mismatch between.
The Analysis of Light Absorption and Extraction of InGaN LEDs Jeng-Feng Lin, Chin-Chieh Kang, Pei-Chiang Kao Department of Electro-Optical Engineering,
Design and characterization of AlGaInAs quantum-well lasers Academic advisor ︰郭艷光 教授 Reporter ︰謝尚衛 Number ︰ Date ︰ 2003/1/6.
Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes Sum DJ L. W. Wu, S. J. Chang, T. C. Wen, Y.
Heterostructures & Optoelectronic Devices
班 級:碩研電子二甲 姓 名:江宥辰 學 號: M 授課教師:蔣富成.  1. Crystalline Quality  2. Current Spreading Effect  3. Discussion  4. Reference.
Daniel Bowser Fernando Robelo
April 27, O’Dwyer, C. et al. Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light emitting devices. Nature.
Advisor: Prof. Yen-Kuang Kuo
藍光雷射實驗室 Blue Laser Laboratory 郭艷光 Yen-Kuang Kuo 彰化師大物理系暨光電科技研究所教授兼彰化師大理學院院長 電子郵件 : 網頁 :
Novel Metal-Oxide-Semiconductor Device
Use different substrate for InGaN-GaN LED 陳詠升. Outline Introduction Experiment Results and Discussion Conclusion References.
Results and discussion. Conclusion In conclusion, thinning the sapphire substrate enables the control of the residual compressive stress developed in.
Lecture 14 OUTLINE pn Junction Diodes (cont’d) – Transient response: turn-on – Summary of important concepts – Diode applications Varactor diodes Tunnel.
1 Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育.
Current spreading and thermal effects in blue LED dice Jen Kai Lee.
Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS.
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
1 Fig. 3. HRXRD omega/2theta scans of single-, dual-, and step-stage MQW structures.
Y.W. Lin. Outline Introduction Experiments Results and Discussion Conclusion References.
P.K. Lin 1.
1 An LSB Substitution base Information Hiding Technique 國立彰化師範大學 資訊工程學系教授兼系主任 蕭如淵 (Ju-Yuan Hsiao) 中華民國九十四年十二月十六日.
Current spreading of III-nitride light-emitting diodes using plasma treatment Hsin-Ying Lee Ke-Hao Pan Chih-Chien Lin Yun-Chorng Chang Fu-Jen Kao Ching-Ting.
專題研討 ( 二 ) Electron-Blocking-Layer, n-EBL Hole-Blocking-Layer, HBL 碩研電子一甲 MA 楊書瑋.
Ru-Chin Tu, Chun-Ju Tun, Shyi-Ming Pan, Chang-Cheng Chuo, J. K. Sheu, Ching-En Tsai, Te-Chung Wang,and Gou-Chung Chi IEEE PHOTONICS TECHNOLOGY LETTERS,
Controlled fabrication and optical properties of one-dimensional SiGe nanostructures Zilong Wu, Hui Lei, Zhenyang Zhong Introduction Controlled Si and.
Experimental Details 1 Fig. 1. Schematic diagram of the investigated LED layer structure. In the present work, the Mg doping width of the LT p-GaN interlayer.
1 學生:黃順源 老師:管 鴻 教授 Light Extraction Efficiency Enhancement of GaN Blue LED by Liquid-Phase-Deposited ZnO Rods copy.
GaN-Based MSM Photodetectors Prepared on Patterned Sapphire Substrates Shoou-Jinn Chang, Member, IEEE, Y. D. Jhou, Y. C. Lin, S. L. Wu, C. H. Chen, T.
Date of download: 6/24/2016 Copyright © 2016 SPIE. All rights reserved. Forward I−V characteristics measured for LED I, LED II, and LED III. Figure Legend:
It converts light energy into electrical energy.
Chapter 9. Optoelectronic device
PN-junction diodes: Applications
Y.Y CHEN.
Luminescent Periodic Microstructures for Medical Applications
A CMOS Biosensor System-on-Chip for Mobile Applications
Strong infrared electroluminescence from black silicon
by Shuji Nakamura Science Volume 281(5379): August 14, 1998
Carbon Nanotube Diode Design
Presentation transcript:

光電科技 LED: Materials and Device Aspects 授課教師 : 龔 志 榮 教授 國立中興大學物理學系 中華民國一○二年四月二十二日 1

§ 1-1 Optical Semiconductor Materials *Elemental semiconductors : Si, Ge, ( used in photodiodes only ) *Compound semiconductors Ⅲ - Ⅴ compounds & alloys Ⅳ compounds & alloys Ⅰ - Ⅲ - Ⅵ 2 compounds Ⅱ - Ⅳ - Ⅴ 2 compounds Ⅳ - Ⅳ compounds For applications in light emitting devices like LEDs and LDs as well as photodiodes ( solar cells & photodetectors ) 2

*Bonding and Band structure in semiconductors 3

4

5

6

Physical Properties of Optical Semiconductors 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

cross-section of diffusion fabricated LED

light emitting in the pn junction

42

EQE of LEDs in the visible spectrum

LED materialSubstrateTypeWavelength(nm)ColorEfficiency InGaNSapphireD UV-RedMedium-High AlGaInPGaAsD560GreenMedium AlGaInPGaPD570GreenMedium AlGaInPGaPD590YellowHigh AlGaInPGaPD607OrangeHigh AlGaInPGaPD RedHigh AlGaAsGaAsD RedMedium Table 1: III-V semiconductor LEDs’ wavelength, Color and Efficiency

LED materialSubstrateTypeWavelength(nm)ColorEfficiency GaAsP:NGaPI589YellowLow GaAsP:NGaPI632RedLow GaAsPGaAsD649RedLow GaP I555GreenLow GaP:NGaPI565GreenLow GaP:N,NGaPI590YellowLow GaP:ZnOGaPI699RedMedium AlGaAs:SiGaAsD IRHigh GaAs:SiGaAsD IRHigh

Cross-sectional schematic of a flip chip ( 覆晶 ) GaN LED

InGaAs LED containing a photonic crystal

48

49

光電科技 LED: Recent Advances and Applications 授課教師 : 龔 志 榮 教授 國立中興大學物理學系 中華民國一○二年五月二十日 50

Internal Quantum Efficiency Enhancement 52

Cheng-Liang Wang, Jyh-Rong Gong,* Ming-Fa Yeh, Bor-Jen Wu, Wei-Tsai Liao, Tai-Yuan Lin, and Chung-Kwei Lin 53 IEEE Photonic Technology Letters 18 (2006) 1497 * Department of Physics, National Chung Hsing University, TAIWAN, R.O.C.

GaN-based LED structures w/wo SPSLs C. L. Wang et al. IEEE Photon. Tech. Lett. 18 (2006) 1497

DCXRD and EPD of GaN-based LEDs vs. SPSL set numbers C. L. Wang et al. IEEE Photon. Tech. Lett. 18 (2006) 1497

EL and I-V characteristics C. L. Wang et al. IEEE Photon. Tech. Lett. 18 (2006) 1497

InGaN/GaN multi-quantum wells A cross-sectional TEM image mapping of the SPSL-inserted LED structure 2 sets of short period superlattices 500nm 100nm u-GaN n-GaN p-GaN n-GaN C. L. Wang et al. IEEE Photon. Tech. Lett. 18 (2006) 1497

Current-voltage charateristics C. L. Wang et al. IEEE Photon. Tech. Lett. 18 (2006) 1497

59 Cheng-Liang Wang, Ming-Chang Tsai, Jyh-Rong Gong,* Wei-Tsai Liao, Ping-Yuan Lin, Kuo- Yi Yen, Chia-Chi Chang, Hsin-Yueh Lin, and Shen-Kwang Hwang * Department of Physics, National Chung Hsing University, TAIWAN, R.O.C. Materials Science & Engineering B 138 (2007) 180

According to the standard Shockley model, the I–V relationship of a forward-biased p–n junction can be approximated by I = Is exp(q V/ηkT), where Is, q, k, η and T, respectively, are saturation current of the diode, electron charge, Boltzmann constant, and ideality factor and absolute temperature of the diode. 60

Semilogarithmic I–V plots of the forward-biased In 0.2 Ga 0.8 N/GaNMQWLEDs having (a) zero-set, (b) one-set, (c) two-set, and (d) three-set Al 0.3 Ga 0.7 N/GaN SPSL insertion. C. L. Wang et al. MSE B 138 (2007) 180

Typical optical surface morphologies of etched In 0.2 Ga 0.8 N/GaN MQW LEDs having (a) zero-, (b) one-, (c) two-, and (d) three-set Al 0.3 Ga 0.7 N/GaN SPSL insertion. C. L. Wang et al. MSE B 138 (2007) 180

Typical I–V characteristics of the reverse-biased In 0.2 Ga 0.8 N/GaNMQW LEDs (1) without SPSL insertion, (2) with one set of Al 0.3 Ga 0.7 N/GaN SPSL insertion, (3) with two sets of Al 0.3 Ga 0.7 N/GaN SPSL insertion, and (4) with three sets of Al 0.3 Ga 0.7 N/GaN SPSL insertion, respectively. The inset exhibits plots of the corresponding EL intensity vs. emissionwavelength of the two LEDs having no SPSL and two sets of SPSL operated at 20 mA.

C. L. Wang et al. MSE B 138 (2007) 180

Wei-Tsai Liao, Jyh-Rong Gong,* Cheng-Liang Wang, Wei-Lin Wang, Chih-Chang Tsuei, Cheng-Yen Lee, Keh-Chang Chen, Jeng-Rong Ho, and Ren C. Luo 65 Electrochemical and Solid-State Letters, 10 1 H5-H7 (2007) * Department of Physics, National Chung Hsing University, TAIWAN, R.O.C.

Typical 0002 DCXRD curves of the In 0.1 Ga 0.9 N/Al 0.03 Ga 0.97 N MQW LED structures grown on c- and a-plane sapphire substrates. Insets: the corresponding XTEM micrographs of the LEDs near MQW area, respectively W. T. Liao et al. Electrochem. Solid-State Lett. 10 (2007) H5

Characteristics of the In 0.1 Ga 0.9 N/Al 0.03 Ga 0.97 N MQW LEDs grown on c- and a-plane sapphire substrates W. T. Liao et al. Electrochem. Solid-State Lett. 10 (2007) H5

Plots of EL intensity vs forward current of the In0.1Ga0.9N/Al0.03Ga0.97N MQW LEDs grown on c- and a-plane sapphire substrates. Inset: a typical room-temperature EL spectra measured at 20 mA for the In0.1Ga0.9N/Al0.03Ga0.97N MQW LEDs grown on c- and a-plane sapphire substrates. W. T. Liao et al. Electrochem. Solid-State Lett. 10 (2007) H5

Typical FESEM surface morphologies of the etched In 0.1 Ga 0.9 N/Al 0.03 Ga 0.97 N MQW LEDs grown on a c- and b a-plane sapphire substrates W. T. Liao et al. Electrochem. Solid-State Lett. 10 (2007) H5

External Quantum Efficiency Enhancement 70

Kuo-Yi Yen, Chien-Hua Chiu, Chun-Wei Li, Chien-Hua Chou, Pei-Shin Lin, Tzu-Pei Chen,Tai-Yuan Lin, and Jyh-Rong Gong* 71 * Department of Physics, National Chung Hsing University, TAIWAN, R.O.C. IEEE PhotonicTechnologyLett.ers 24 (2012) 2105

72

Typical I-V curves of (a) N 2 -annealed n + -GZO contacts along with an ITO contact on p-GaN/sapphire templates and (b) forward-biased InGaN/GaN MQW LEDs with an as-deposited n + -GZO TCL, an ITO TCL and n + -GZO TCLs being N 2 -annealed at 400 °C, 500 °C, 600 °C, 700 °C, and 800 °C. K. Y. Yen et al. IEEE Photon.Tech.Lett. 24 (2012) 2105

Schematic showing electron tunneling in a reverse-biased n + GZO/p-GaN hetero-junction K. Y. Yen et al. IEEE Photon. Tech. Lett. 24 (2012) 2105

K. Y. Yen et al. IEEE Photon.Tech.Lett. 24 (2012) 2105 (a)–(f) θ-2θ XRD plots of as- deposited n + -GZO TCL and n + -GZO TCLs on GaN/c-sapphire substrates being annealed at 400 °C, 500 °C, 600 °C, 700 °C, and 800 °C for 5 min in N 2 ambient.

Light output powers of InGaN/GaN MQW LEDs with as-deposited n + -GZO, 400 °C N 2 -annealed n + -GZO and commercial ITO TCLs K. Y. Yen et al. IEEE Photon. Tech. Lett. 24 (2012) 2105

Optical transmittances of as-deposited n + -GZO, 400 °C N 2 -annealed n + -GZO and ITO films deposited on c-sapphire substrates K. Y. Yen et al. IEEE Photon. Tech. Lett. 24 (2012) 2105

78