DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.

Slides:



Advertisements
Similar presentations
NEMO-III Status and prospects. 12 December 2005 HEP group Christmas meeting Vladimir Vasiliev.
Advertisements

Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Penning-Trap Mass Spectrometry for Neutrino Physics
Amand Faessler, 22. Oct Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the.
K. Zuber, University of Sussex Neutrinoless double beta decay SUSSP 61, St. Andrews, 9-23 Aug
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
M. Dracos 1 Double Beta experiment with emulsions?
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
-Nucleus Interactions Double-beta Decay and Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
XXIV WWND South Padre, TX, April 08 W. Bauer Slide 1 Double  Decays, DUSEL, and the Standard Model Wolfgang Bauer Michigan State University.
Potassium Geo-neutrino Detection Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
New limits on  + EC and ECEC processes in 74 Se and 120 Te A.S. Barabash 1), F. Hubert 2), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow,
Double Beta Decay Present and Future
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
Double-Beta Decay of 96 Zr and Double-Electron Capture of 156 Dy to Excited Final States Sean Finch Thesis Defense March 25, 2015.
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
Nuclear matrix elements 1 / T 1/2 = PS * NME 2 * (m / m e ) 2 measured quantityquantity of interest The big unknown Started worldwide effort for a coherent.
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
139 Ba decay: precise half-life measurement and gamma-spectroscopy at BARC: an offshoot of ENSDF evaluation work. P.K.Joshi Homi Bhabha Centre for Science.
31 October 2008Group seminar1 Hong Kong. 31 October 2008Group seminar2 Christchurch Home to the Canterbury Crusaders rugby team.
Prospect of  experiment in Korea Presented by H.J.Kim Yonsei Univ., 10/25/2003 KPS 2003 fall meeting Contents 1) Introduction of 2) Theory and Experiments.
Present status of CUORE / CUORICINO Andrea Giuliani Università dell’Insubria and INFN Milano 3rd IDEA meeting, Orsay, April 14 – 15, 2005.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Modern Periodic Table Objective:
Development of metal-loaded liquid scintillators for the double beta decay experiment 연세대 : 황명진, 권영준 서울대 : 곽정원, 김상열, 김선기, 김승천, 김태연, 명성숙, 방형찬, 이명재, 이직,
Neutrino-related nuclear mass difference measurements with a few 10 eV uncertainty at SHIPTRAP Enrique MINAYA RAMIREZ Max-Planck-Institut für Kernphysik,
Welcome talk IDEA meeting, Prague, MEDEX workshop news 2.Present status of the TGV II 3.Organization remarks I.Štekl Institute of experimental.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
Telescope Germanium Vertical Telescope Germanium Vertical JINR Dubna, Russia CSNSM Orsay, France CTU Prague, Czech Republic RRC - Kurchatov Institute Moscow,
Present and future activities in LSM (2 nd LSM Extension WORKSHOP, Oct.16, 2009) (1) TGV experiment – measurement of 2 EC/EC decay of 106 Cd (2) R&D of.
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Search for double electron capture in 106 Cd using HPGe detectors and Si pixel detectors Ivan Štekl for TGV collaboration Institute of Experimental and.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Neutrinoless double electron capture experiment at LSM University of Muenster, Germany (Dieter Frekers et al.) Technical University of Dresden, Germany.
DOUBLE BETA DECAY EXPERIMENTS Yeongduk Kim Sejong University 2 nd Amore Meeting
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
OMC rates in different nuclei related to 2β-decay. K.Ya. Gromov, D.R. Zinatulina, C. Briançon, V.G. Egorov, A.V. Klinskih, R.V. Vasiliev, M.V.Shirchenko,I.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Activities on double beta decay search at KIMS
Status of 100Mo based DBD experiment
Sr-84 0n EC/b+ decay search with SrCl2 crystal
Mo-92 EC/beta+ search with CaMoO4 crystal at Y2L
Emission of Energy by Atoms and Electron Configurations
Periodic Table of the Elements
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
The 0-neutrino double beta decay search
Double Beta experiment with emulsions?
Presentation transcript:

DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW

OUTLINE  Introduction  2 - (2) -decay to the excited ststates Mo Nd  2 - (0) –decay to the excite states  ECEC to the excited states  Conclusion

I. Introduction

1.1. Historical introduction E. Fiorini (1977, NEUTRINO’77) – first time obtained limit on decay in Ge-76 (as by-product for transition) *): T 1/2 (0)> 3·10 21 y (68% C.L.) *) Of course, from geochemical experiments one can extract limits too.

1982 – first special experimental work to investigate 2- decay to the excited states was done: E. Bellotti et al., Lett. Nuov. Cim. 33 (1982) 273. ( 58 Ni, 76 Ge, 92 Mo, 100 Mo, 148 Nd, 150 Nd; Transitions to 2 + 1, O + 1, 2 + 2, … excited states) Limits on the level ( )·10 21 y for 76 Ge and ~ y for other nuclei were obtained.

 Many new results for 76 Ge ( ). And even “evidence” of the decay on 2.5 level (T 1/2  y) have been obtained.  3 experiments were done by E. Norman ( 50 Cr, 58 Ni, 64 Zn, 92 Mo, 94 Zr, 96 Zr, 96 Ru, 106 Cd, 116 Cd, 124 Sn; natural samples). Limits on the level ~ y were obtained.

 It was demonstrated that 2(2; )-decay can be detected in 100 Mo, 96 Zr and 150 Nd by existing low-background HPGe detectors and new experiments were proposed (A.S.B. preprint ITEP, , 1989; JETP Lett. 51 (1990) 207).  ITEP-USC-PNL-UM experiment with 1 kg of 100 Mo was started on 30 May 1990 (in Soudan mine).

Measurement was stopped in September’91  First “positive” result was reported at a few International Conferences (Moriond’91, TAUP’91, WEIN’92,…)  Final result was published in 1995 [PL B 345 (1995) 408]: T 1/2 = ·10 20 y

1999 – 2-nd positive result for 100 Mo; 2001 – 3-d positive result for 100 Mo (in ITEP-TUNL experiment); 2004 – 1-st positive result for 150 Nd; 2007 – 4-th positive result for 100 Mo (in NEMO-3 experiment).

ITEP-TUNL experiment

1.2. Present motivation  Nuclear spectroscopy  NME problem  Checking of some “creasy” ideas ( “bosonic” neutrino, …)  0-decay: - very nice signature (2 - ); - high sensitivity (ECEC; resonance conditions).

II. 2 - (2)-decay to the excited states Table 1. 2 transition to excited state. Nucle i E 2, keVT 1/2, y Exper. Theory, 2007[1] Theory, [2,3] 48 Ca3288.5>1.8· · Nd3033.6>9.1· Zr2572.2>7.9· ·10 25 ( )· Mo2494.5>1.6· · ·10 22 [4]

Table 1. (Continue) 82 Se2218.5>1.4· · · Te1992.7>2.8· ·10 26 (2.8-15)· Xe · · Cd1511.5>2.3·10 21 >3.4· · Ge1480>1.1·10 21 >5.8· · Pd1342 ->1.5·

Table 2. 2-decay to excited state Nucle i E 2, keVT 1/2, y Exper. Theory [2] Theory [4] 150 Nd2627.1=1.4· Zr2202.5>6.8· · · Mo1903.7=6.2· ·10 21 [5]2.1· Se1507.5>3.0·10 21 ( )· Ca1274.8>1.5·

Table 2. (Continue) 124 Sn Cd1048.2>2.0· · · Ge916.7>6.2· · · · Xe · · Te735.7>2.3· ·10 22 – 1.4·

References [1] A.A. Raduta and C.M. Raduta, Phys. Lett. B 647 (2007) 265. [2] M. Aunola and J. Suhonen, Nucl. Phys. A 602 (1996) 133. [3] J. Toivanen and J. Suhonen, Phys. Rev. C 55 (1997) [4] S. Stoica and I. Mihut, Nucl. Phys. A 602 (1996) 197. [5] J.G. Hirsch et al., Phys. Rev. C 51 (1995) 2252.

Table 3. Present “positive” results on 2  (2 ) decay of 100 Mo to the first 0 + excited state of 100 Ru T 1/2, y; x10 20 NS/BYear, method ± ± ± ~ 1/3 8/1 3/1 1995, HPGe [6] 1999, HPGe (many samples) [7] 2001, 2xHPGe (coincidence) [8,9] 2007, NEMO-3, (2e+2  ) [10] Average value: ·10 20 y

References [6] A.S. Barabash et al., Phys. Lett. B 345 (1995) 408. [7] A. S. Barabash et al., Phys. At. Nucl. 62 (1999) [8] L. De Braeckeleer et al., Phys. Rev. Lett. 86 (2001) [9] M.J. Hornish et al., Phys. Rev. C 74 (2006) [10] R. Arnold et al., Nucl. Phys. A 781 (2007) 209.

NEMO Mo: bb decay to exc. states 2  decay to the state: S/B = 3.0 T 1/2 =[ (stat) ± 0.8(syst)]  y 0  decay to the state: T 1/2 > 8.9  % C.L. 2  decay to the state: T 1/2 > 1.1  % C.L. 0  decay to the state: T 1/2 > 1.6  % C.L. Nucl. Phys. A 781 (2007)  decay to the state: S/B = 3.0 T 1/2 =[ (stat) ± 0.8(syst)]  y 0  decay to the state: T 1/2 > 8.9  % C.L. 2  decay to the state: T 1/2 > 1.1  % C.L. 0  decay to the state: T 1/2 > 1.6  % C.L. Nucl. Phys. A 781 (2007) 209 Clear topology: : 2e  in time & energy and TOF cuts : 2e  in time & energy and TOF cuts 100 Mo (540 keV) (1130 keV) (1227 keV) 0 + (g.s.) 100 Ru (1362 keV) 3034 keV 11 22 NEMO-3; days of data (Phase I)

TOP VIEWSIDE VIEW 11 22 11 22 e1e1 e2e2 e1e1 e2e2 100 Mo (NEMO-3) Reconstructed event-candidate

100 Mo (NEMO-3) The main characteristics of selected events

150 Nd Decay scheme 150 Nd (333.9keV) (740.4 keV) (773.3 keV) 0 + (g.s.) 150 Sm ( keV) 3367 keV 11 22 E  1 = keV E  2 = keV

SCHEME OF EXPERIMENT E = 1.9 keV (for 1332 keV) T = h Experiment is done in Modane Underground Laboratory, 4800 m w.e.

Energy spectrum in the range keV

Energy spectrum in the range keV

Analysis of events in the range of peaks under study Peak, keV333.9 ± ± 1.12 Number of events Continuous background Isotopes E, keV 214 Bi 227 Th 228 Ac 333.1, ; ; Bi 211 Pb Contributio n from background Excess of events 86 ± ± 25

150 Nd. Transition to the 0 + excited state T 1/2 = [ (stat) ± 0.3(syst)]·10 20 y [JETP. Lett. 79 (2004) 10]

Comparison of NME for transition to the 0 + ground and excited states (for 100 Mo and 150 Nd)  Conclusion is NME(g.s.)  NME(0 + 1 )  But, in fact, it looks like: NME(g.s.)  ( )xNME(0 + 1 )

III. 2(0)-decay to excited states Very nice signature: 2e - and two (one) gamma with fixed energy  Possibility to have “zero” background  Possibility to have high sensitivity (if registration efficiency and energy resolution are high enough)

3.1. 2(0)-decay to excited state Many years people thought that this decay is sensitive only to right-handed currents. T. Tomoda demonstrated that this is not through: “…relative sensitivity of decays to the neutrino mass and the right-handed currents are comparable to those of decays.” [T. Tomoda, Phys. Lett. B 474 (2000) 245] The decay is suppressed in ~ two order of magnitude in comparison to transition to 0 + g.s.

Table 4. Best present limits on 2  (0 )- decay to excited state NucleiE 2, keVT 1/2, y (90%CL) 76 Ge1480> 8.2·10 23 (G-M) 100 Mo2494.5> 1.6·10 23 (NEMO-3) 130 Te1992.7> 1.4·10 23 (MiBeta) 116 Cd1511.5> 2.9·10 22 (Solotvino) 136 Xe1649.4> 6.5·10 21 (Milan) 82 Se2218.5> 2.8·10 21 (HPGe)

Table 5. Best present limits on 2(0)-decay to the excited state NucleiE 2 , keVT 1/2, y (90%CL) Theory [11- 14] Theory [15] 150 Nd2627.1>1.0· Zr2202.5>6.8· ·10 24 *) Mo1903.7>8.9· ·10 26 *) 1.5·10 25 *) 82 Se1507.5>3.0· ·10 26 *) 4.5·10 25 *) 48 Ca1274.8>1.5·

Table 5. (Continue) 116 Cd >1.4· ·10 27 *) - 76 Ge 916.7>1.3· ·10 26 *) 2.4·10 26 *) 130 Te 735.3>3.1· · *) For = 1 eV [11] J. Suhonen, Phys. Lett. B 477 (2000) 99. [12] J. Suhonen, Phys. Rev. C 62 (2001) [13] J. Suhonen, Nucl. Phys. A 700 (2002) 649. [14] J. Suhonen and M. Aunola, Nucl. Phys. A 723 (2003) 271. [15] F. Simkovic et al., Phys. Rev. C 64 (2001)

2(0)-decay to excited state  Future possibilities: - MAJORANA and GERDA with 76 Ge  ~ y; - CUORE with 130 Te  ~ y; - SuperNEMO with 82 Se (or 150 Nd)  ~ y;

IV. ECEC to the excited states  1994 (A.S.B. JETP Lett. 59 (1994) 677). Main assumption: NME(2 ; 0 + g.s. )  NME(2 ; ): then T 1/2 (0 + 1 ) ~ y for 96 Ru, 106 Cd, 124 Xe, 136 Ce; ~ y for 78 Kr and 130 Ba Very nice signature: in addition to two X-rays we have here two gamma with strictly fixed energy (E ~ keV)  New experiments were proposed

Table 6. Best present limits on ECEC(2) to the excited state NucleiE ECEC, keVT 1/2, y (90%CL) Theory 130 Ba1236>1.5·10 21 *) ~ Cd1580>7.3·10 19 ~ Kr1343>1.2·10 21 **) ~ Mo230>8.1·10 20 ~ Ru1519>4.5·10 16 ~ *) Extracted from geochemical experiment **) Extracted from result for g.s. transition

IV.2. ECEC(0); resonance conditions Transition to the ground state. For the best candidates ( = 1 eV):  +  + (0) ~ y  + EC(0) ~ y ECEC(0) ~ y (One can compare these values with ~ y for 2 - -decay)

ECEC(0) to the ground state  2e b + (A,Z)  (A,Z-2) + 2X +  brem + 2 + e + e - + e - int E ,.. = M -  e1 - e2 Suppression factor is ~ 10 4 (in comparison with EC + (0)) – M. Doi and T. Kotani, Prog. Theor. Phys. 89 (1993)139.

Resonance conditions  In 1955 (R.Winter, Phys. Rev. 100 (1955) 142) it was mentioned that if there is excited level with “right” energy then decay rate can be very high. (Q’-E has to be close to zero. Q’-energy of decay, E- energy of excited state)  In 1982 the same idea for transition to ground and excited states was discussed (M. Voloshin, G. Mizelmacher, R. Eramzhan, JETP Lett. 35 (1982)).  In 1983 (J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15) this idea was discussed for 112 Sn (transition to 0 + excited state). It was shown that enhancement factor can be on the level ~ 10 6 !

J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) Sn  112 Cd [0 + (1871)] M = ±4.8 keV Q’(KK;0 + ) = M – E*(0 + ) – 2E K = = (-4.9 ± 4.8) keV T 1/2  3·10 24 y (for m = 1 eV) (if Q’ ~ 10 eV)

Resonance conditions  In 2004 the same conclusion was done by Z. Sujkowski and S. Wycech (Phys. Rev. C 70 (2004) ).  Resonance condition (using EC(2) arguments): E brems = Q’ res = E(1S,Z-2)-E(2P,Z-2) (i.e. when the photon energy becomes comparable to the 2P-1S level difference in the final atom) Q’-Q’res < 1 keV

Decay-scheme of 74 Se Here Q = M = keV Q’ = M - 2E b Q’(E*) = Q’ –

74 Se. (Nucl. Phys. A 785 (2007) 371)  400 cm 3 HPGe detector (Modane Underground Laboratory; 4800 m w.e.)  563 g of natural Se (4.69 g of 74 Se)  Measurement time is h

74 Se

74 Se (Nucl. Phys. 785 (2007) 371.)

74 Se. (Nucl. Phys. A 785 (2007) 371) Transition to ( keV) state (595.8 keV and keV lines were investigated): T 1/2 (0;L 1 L 2 ) > 0.55·10 19 y

74 Se. Possible improvements  1 kg of 74 Se  ~ 3·10 21 y  200 kg of 74 Se (using an installation such as GERDA or MAJORANA)  ~ y

Other isotope-candidates NucleiA,% M,keV E*,keVEKEK E L2 74 Se ± (2 + ) Kr ± (2 + ) Ru ± (?) Cd ± (1,2 + ) Sn ± (0 + ) Ba ± (?) Ce ± (1 +, (1 +, Er ± (1 + )

Table 7. Best present limits on ECEC(0) to the excited state (for isotope-candidates with possible resonance conditions) NucleiE*(J  f )T 1/2, y 106 Cd2741 (1,2 + )> 3·10 19 [16] > 5·10 19 *) [17] 74 Se1204.2(2 + )> 0.55·10 19 [18] 130 Ba2608.4(?)> 1.5·10 21 [19,20] (geochemical) 78 Kr2838.9(2 + )> 1.2·10 21 *) [21] *) Extracted from result for 2( g.s. ) transition

References [16] P. Belli et al., Astr. Phys. 10 (1999) 115. [17] N.I. Rukhadze et al., Phys. At. Nucl. 69 (2006) [18] A.S. Barabash et al., Nucl. Phys. A 785 (2007) 371. [19] A. P. Meshik et al., Phys. Rev. 64 (2001) [20] A.S. Barabash and R.R. Saakyan, Phys. At. Nucl. 59 (1996) 179. [21] Ju.M. Gavriljuk et al., Phys. At. Nucl. 69 (2006) 2124.

g.s.-g.s. transitions 152 Gd (0.2%), 164 Er (1.56%), 180 W(0.13%) (There are only X-rays in this case)

Problems  There is no good theoretical description  Accuracy of M (and Q as a result) is not very good (~ 2-10 keV) [It is possible to improve the accuracy of M to ~ 200 eV]

CONCLUSION  2(2)-decay to 0 + excited state was detected for 100 Mo and 150 Nd  There are good prospects to search for 2(2) and 2(0)-decay to 0 + excited states in future (large) experiments  ECEC(0) is a “new-old” possibility to search for neutrino mass (in case of resonance conditions)